Context-dependent biological control of an invasive thistle
Carduus nutans (nodding or musk thistle) is an important invasive plant of Eurasian origin. Biological control of this species, using insects that attack rosettes or developing seed heads, has met with varied success in different parts of its invaded range. Here we develop and compare simple demogra...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2005-12, Vol.86 (12), p.3174-3181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3181 |
---|---|
container_issue | 12 |
container_start_page | 3174 |
container_title | Ecology (Durham) |
container_volume | 86 |
creator | Shea, Katriona Kelly, Dave Sheppard, Andrew W. Woodburn, Tim L. |
description | Carduus nutans (nodding or musk thistle) is an important invasive plant of Eurasian origin. Biological control of this species, using insects that attack rosettes or developing seed heads, has met with varied success in different parts of its invaded range. Here we develop and compare simple demographic matrix models for populations of this species in Australia and New Zealand, to explore reasons for these differences. In a New Zealand population, rapid population growth of C. nutans is driven by early life history transitions. In an Australian population, fecundity of C. nutans is of reduced importance, and survivorship of rosettes plays an increased role. These differences suggest how biocontrol agents that are successful at providing control in one situation may fail in another. Theoretical explorations of the models show which life history transitions drive the differences in matrix elasticities. We suggest that characteristics of the invaded community also play a role in invasion success of this species, and develop theoretical and empirical approaches to assess what factors may drive population growth, and hence what control methods are most likely to work, under different circumstances. |
doi_str_mv | 10.1890/05-0195 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20733827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3450722</jstor_id><sourcerecordid>3450722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-5f89fbc5eb874054559779f0f81bc0fc4a8dea9fe3bb22eef5d3a1ddda29fb8e3</originalsourceid><addsrcrecordid>eNp1kE9LHTEUxUNpoa-29AsIHYTa1dibfy8JrspDa0FwoS66CpnMjeYxTp7JPFu_ffMYqSCYzV2c3zm59xDymcIR1Qa-g2yBGvmGLKjhpjVUwVuyAKCsNUup35MPpayhPir0ghyv0jjh36ntcYNjj-PUdDEN6SZ6NzS-ijkNTQqNG5s4PrgSH7CZbmOZBvxI3gU3FPz0NPfI9enJ1eqsPb_4-Wv147z1YmlEK4M2ofMSO60ESCGlUcoECJp2HoIXTvfoTEDedYwhBtlzR_u-d6z6NPI9cjjnbnK632KZ7F0sHofBjZi2xTJQnGumKnjwAlynbR7rbpZRAwwoiAp9myGfUykZg93keOfyo6Vgdw1akHbXYCW_PsW5UtsI2Y0-lmdc8aXQhlZOzNyfOODja3H2ZPWbAUi9pIxTtVtkf7aty5TyfxsXEhRjVf4yy8El625y_fn6sp7A6xWSayn4P1tmkQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219020104</pqid></control><display><type>article</type><title>Context-dependent biological control of an invasive thistle</title><source>Jstor Complete Legacy</source><source>Wiley Online Library - AutoHoldings Journals</source><creator>Shea, Katriona ; Kelly, Dave ; Sheppard, Andrew W. ; Woodburn, Tim L.</creator><creatorcontrib>Shea, Katriona ; Kelly, Dave ; Sheppard, Andrew W. ; Woodburn, Tim L.</creatorcontrib><description>Carduus nutans (nodding or musk thistle) is an important invasive plant of Eurasian origin. Biological control of this species, using insects that attack rosettes or developing seed heads, has met with varied success in different parts of its invaded range. Here we develop and compare simple demographic matrix models for populations of this species in Australia and New Zealand, to explore reasons for these differences. In a New Zealand population, rapid population growth of C. nutans is driven by early life history transitions. In an Australian population, fecundity of C. nutans is of reduced importance, and survivorship of rosettes plays an increased role. These differences suggest how biocontrol agents that are successful at providing control in one situation may fail in another. Theoretical explorations of the models show which life history transitions drive the differences in matrix elasticities. We suggest that characteristics of the invaded community also play a role in invasion success of this species, and develop theoretical and empirical approaches to assess what factors may drive population growth, and hence what control methods are most likely to work, under different circumstances.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/05-0195</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecology Society of America</publisher><subject>active adaptive management ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; biological control ; biological control agents ; Carduus nutans ; Comparative analysis ; context-dependent management ; Ecological genetics ; Ecological invasion ; Ecological life histories ; elasticity analysis ; Fecundity ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; General aspects ; Invasive species ; life history ; matrix model ; musk thistle ; nodding thistle ; Nonnative species ; Plant populations ; Plants ; Population ecology ; Population growth ; Population growth rate ; Rhinocyllus conicus ; Seed banks ; Special Feature: Empirically Motivated Ecological Theory ; Trichosirocalus horridus ; Trichosirocalus mortadelo ; Urophora solstitialis</subject><ispartof>Ecology (Durham), 2005-12, Vol.86 (12), p.3174-3181</ispartof><rights>Copyright 2005 Ecological Society of America</rights><rights>2005 by the Ecological Society of America</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Ecological Society of America Dec 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-5f89fbc5eb874054559779f0f81bc0fc4a8dea9fe3bb22eef5d3a1ddda29fb8e3</citedby><cites>FETCH-LOGICAL-c4694-5f89fbc5eb874054559779f0f81bc0fc4a8dea9fe3bb22eef5d3a1ddda29fb8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3450722$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3450722$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17364891$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shea, Katriona</creatorcontrib><creatorcontrib>Kelly, Dave</creatorcontrib><creatorcontrib>Sheppard, Andrew W.</creatorcontrib><creatorcontrib>Woodburn, Tim L.</creatorcontrib><title>Context-dependent biological control of an invasive thistle</title><title>Ecology (Durham)</title><description>Carduus nutans (nodding or musk thistle) is an important invasive plant of Eurasian origin. Biological control of this species, using insects that attack rosettes or developing seed heads, has met with varied success in different parts of its invaded range. Here we develop and compare simple demographic matrix models for populations of this species in Australia and New Zealand, to explore reasons for these differences. In a New Zealand population, rapid population growth of C. nutans is driven by early life history transitions. In an Australian population, fecundity of C. nutans is of reduced importance, and survivorship of rosettes plays an increased role. These differences suggest how biocontrol agents that are successful at providing control in one situation may fail in another. Theoretical explorations of the models show which life history transitions drive the differences in matrix elasticities. We suggest that characteristics of the invaded community also play a role in invasion success of this species, and develop theoretical and empirical approaches to assess what factors may drive population growth, and hence what control methods are most likely to work, under different circumstances.</description><subject>active adaptive management</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>biological control</subject><subject>biological control agents</subject><subject>Carduus nutans</subject><subject>Comparative analysis</subject><subject>context-dependent management</subject><subject>Ecological genetics</subject><subject>Ecological invasion</subject><subject>Ecological life histories</subject><subject>elasticity analysis</subject><subject>Fecundity</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Invasive species</subject><subject>life history</subject><subject>matrix model</subject><subject>musk thistle</subject><subject>nodding thistle</subject><subject>Nonnative species</subject><subject>Plant populations</subject><subject>Plants</subject><subject>Population ecology</subject><subject>Population growth</subject><subject>Population growth rate</subject><subject>Rhinocyllus conicus</subject><subject>Seed banks</subject><subject>Special Feature: Empirically Motivated Ecological Theory</subject><subject>Trichosirocalus horridus</subject><subject>Trichosirocalus mortadelo</subject><subject>Urophora solstitialis</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LHTEUxUNpoa-29AsIHYTa1dibfy8JrspDa0FwoS66CpnMjeYxTp7JPFu_ffMYqSCYzV2c3zm59xDymcIR1Qa-g2yBGvmGLKjhpjVUwVuyAKCsNUup35MPpayhPir0ghyv0jjh36ntcYNjj-PUdDEN6SZ6NzS-ijkNTQqNG5s4PrgSH7CZbmOZBvxI3gU3FPz0NPfI9enJ1eqsPb_4-Wv147z1YmlEK4M2ofMSO60ESCGlUcoECJp2HoIXTvfoTEDedYwhBtlzR_u-d6z6NPI9cjjnbnK632KZ7F0sHofBjZi2xTJQnGumKnjwAlynbR7rbpZRAwwoiAp9myGfUykZg93keOfyo6Vgdw1akHbXYCW_PsW5UtsI2Y0-lmdc8aXQhlZOzNyfOODja3H2ZPWbAUi9pIxTtVtkf7aty5TyfxsXEhRjVf4yy8El625y_fn6sp7A6xWSayn4P1tmkQE</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Shea, Katriona</creator><creator>Kelly, Dave</creator><creator>Sheppard, Andrew W.</creator><creator>Woodburn, Tim L.</creator><general>Ecology Society of America</general><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>200512</creationdate><title>Context-dependent biological control of an invasive thistle</title><author>Shea, Katriona ; Kelly, Dave ; Sheppard, Andrew W. ; Woodburn, Tim L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-5f89fbc5eb874054559779f0f81bc0fc4a8dea9fe3bb22eef5d3a1ddda29fb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>active adaptive management</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>biological control</topic><topic>biological control agents</topic><topic>Carduus nutans</topic><topic>Comparative analysis</topic><topic>context-dependent management</topic><topic>Ecological genetics</topic><topic>Ecological invasion</topic><topic>Ecological life histories</topic><topic>elasticity analysis</topic><topic>Fecundity</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Invasive species</topic><topic>life history</topic><topic>matrix model</topic><topic>musk thistle</topic><topic>nodding thistle</topic><topic>Nonnative species</topic><topic>Plant populations</topic><topic>Plants</topic><topic>Population ecology</topic><topic>Population growth</topic><topic>Population growth rate</topic><topic>Rhinocyllus conicus</topic><topic>Seed banks</topic><topic>Special Feature: Empirically Motivated Ecological Theory</topic><topic>Trichosirocalus horridus</topic><topic>Trichosirocalus mortadelo</topic><topic>Urophora solstitialis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shea, Katriona</creatorcontrib><creatorcontrib>Kelly, Dave</creatorcontrib><creatorcontrib>Sheppard, Andrew W.</creatorcontrib><creatorcontrib>Woodburn, Tim L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shea, Katriona</au><au>Kelly, Dave</au><au>Sheppard, Andrew W.</au><au>Woodburn, Tim L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-dependent biological control of an invasive thistle</atitle><jtitle>Ecology (Durham)</jtitle><date>2005-12</date><risdate>2005</risdate><volume>86</volume><issue>12</issue><spage>3174</spage><epage>3181</epage><pages>3174-3181</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Carduus nutans (nodding or musk thistle) is an important invasive plant of Eurasian origin. Biological control of this species, using insects that attack rosettes or developing seed heads, has met with varied success in different parts of its invaded range. Here we develop and compare simple demographic matrix models for populations of this species in Australia and New Zealand, to explore reasons for these differences. In a New Zealand population, rapid population growth of C. nutans is driven by early life history transitions. In an Australian population, fecundity of C. nutans is of reduced importance, and survivorship of rosettes plays an increased role. These differences suggest how biocontrol agents that are successful at providing control in one situation may fail in another. Theoretical explorations of the models show which life history transitions drive the differences in matrix elasticities. We suggest that characteristics of the invaded community also play a role in invasion success of this species, and develop theoretical and empirical approaches to assess what factors may drive population growth, and hence what control methods are most likely to work, under different circumstances.</abstract><cop>Washington, DC</cop><pub>Ecology Society of America</pub><doi>10.1890/05-0195</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2005-12, Vol.86 (12), p.3174-3181 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_miscellaneous_20733827 |
source | Jstor Complete Legacy; Wiley Online Library - AutoHoldings Journals |
subjects | active adaptive management Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences biological control biological control agents Carduus nutans Comparative analysis context-dependent management Ecological genetics Ecological invasion Ecological life histories elasticity analysis Fecundity Flowers & plants Fundamental and applied biological sciences. Psychology General aspects Invasive species life history matrix model musk thistle nodding thistle Nonnative species Plant populations Plants Population ecology Population growth Population growth rate Rhinocyllus conicus Seed banks Special Feature: Empirically Motivated Ecological Theory Trichosirocalus horridus Trichosirocalus mortadelo Urophora solstitialis |
title | Context-dependent biological control of an invasive thistle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-dependent%20biological%20control%20of%20an%20invasive%20thistle&rft.jtitle=Ecology%20(Durham)&rft.au=Shea,%20Katriona&rft.date=2005-12&rft.volume=86&rft.issue=12&rft.spage=3174&rft.epage=3181&rft.pages=3174-3181&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/05-0195&rft_dat=%3Cjstor_proqu%3E3450722%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219020104&rft_id=info:pmid/&rft_jstor_id=3450722&rfr_iscdi=true |