Zero-Shot Learning-A Comprehensive Evaluation of the Good, the Bad and the Ugly

Due to the importance of zero-shot learning, i.e., classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2019-09, Vol.41 (9), p.2251-2265
Hauptverfasser: Xian, Yongqin, Lampert, Christoph H., Schiele, Bernt, Akata, Zeynep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!