Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy

Functionalized nanoparticles (NPs) can penetrate into living cells and vesicles, opening up an extensive range of novel directions. For example, NPs are intensively employed in targeted drug delivery and biomedical imaging. However, the real-time kinetics and dynamics of NP–living cell interactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-08, Vol.10 (32), p.26841-26850
Hauptverfasser: Peter, Beatrix, Lagzi, Istvan, Teraji, Satoshi, Nakanishi, Hideyuki, Cervenak, Laszlo, Zámbó, Dániel, Deák, András, Molnár, Kinga, Truszka, Monika, Szekacs, Inna, Horvath, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26850
container_issue 32
container_start_page 26841
container_title ACS applied materials & interfaces
container_volume 10
creator Peter, Beatrix
Lagzi, Istvan
Teraji, Satoshi
Nakanishi, Hideyuki
Cervenak, Laszlo
Zámbó, Dániel
Deák, András
Molnár, Kinga
Truszka, Monika
Szekacs, Inna
Horvath, Robert
description Functionalized nanoparticles (NPs) can penetrate into living cells and vesicles, opening up an extensive range of novel directions. For example, NPs are intensively employed in targeted drug delivery and biomedical imaging. However, the real-time kinetics and dynamics of NP–living cell interactions remained uncovered. In this study, we in situ monitored the cellular uptake of gold NPsfunctionalized with positively charged alkaline thiolinto surface-adhered cancer cells, by using a high-throughput label-free optical biosensor employing resonant waveguide gratings. The characteristic kinetic curves upon NP exposure of cell-coated biosensor surfaces were recorded and compared to the kinetics of NP adsorption onto bare sensor surfaces. We demonstrated that from the above kinetic information, one can conclude about the interactions between the living cells and the NPs. Real-time biosensor data suggested the cellular uptake of the functionalized NPs by an active process. It was found that positively charged particles penetrate into the cells more effectively than negatively charged control particles, and the optimal size for the cellular uptake of the positively charged particles is around 5 nm. These conclusions were obtained in a cost-effective, fast, and high-throughput manner. The fate of the NPs was further revealed by electron microscopy on NP-exposed and subsequently fixed cells, well confirming the results obtained by the biosensor. Moreover, an ultrastructural study demonstrated the involvement of the endosomal–lysosomal system in the uptake of functionalized NPs and suggested the type of the internalization pathway.
doi_str_mv 10.1021/acsami.8b01546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2072187493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072187493</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b723fc82c9b516d743ca93d5aa62a16bb2b0f82ff688af9ea51f5bc035399dd73</originalsourceid><addsrcrecordid>eNp1kUlPHDEUhC2UiC1cOUY-Rkg98dLrMWmxSUOIFDi3nt02GHnsju0Gzb_hp-LRDNw4vTp8VaqnQuiUkgUljP4EGWFlFq0gtCrrPXRIu7IsWlaxLx-6LA_QUYxPhNSckWofHXBCGKvr8hC9XrukAshkvMNe478-mmSelV3j_hHCgxrxpbcj_gPOTxCSkVZF_GLSI-7BSRVwr6yN-MY7k3zIuFhjcNg4_M-kGS9BKFtcBKXw7ZTdYPFv46Ny0YfMjfgugIsrE-OmwLlVMoUsbowMPko_rb-hrxpsVCe7e4zuL87v-qtieXt53f9aFsA5SYVoGNeyZbITFa3HpuQSOj5WADUDWgvBBNEt07puW9CdgorqSkjCK95149jwY_RjmzsF_39WMQ25lMy_gVN-jgMjDaNtU3Y8o4stuukYg9LDFMwKwnqgZNisMmxXGXarZMP3XfYsVmr8wN9nyMDZFsjG4cnPweVXP0t7A_asmpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072187493</pqid></control><display><type>article</type><title>Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Peter, Beatrix ; Lagzi, Istvan ; Teraji, Satoshi ; Nakanishi, Hideyuki ; Cervenak, Laszlo ; Zámbó, Dániel ; Deák, András ; Molnár, Kinga ; Truszka, Monika ; Szekacs, Inna ; Horvath, Robert</creator><creatorcontrib>Peter, Beatrix ; Lagzi, Istvan ; Teraji, Satoshi ; Nakanishi, Hideyuki ; Cervenak, Laszlo ; Zámbó, Dániel ; Deák, András ; Molnár, Kinga ; Truszka, Monika ; Szekacs, Inna ; Horvath, Robert</creatorcontrib><description>Functionalized nanoparticles (NPs) can penetrate into living cells and vesicles, opening up an extensive range of novel directions. For example, NPs are intensively employed in targeted drug delivery and biomedical imaging. However, the real-time kinetics and dynamics of NP–living cell interactions remained uncovered. In this study, we in situ monitored the cellular uptake of gold NPsfunctionalized with positively charged alkaline thiolinto surface-adhered cancer cells, by using a high-throughput label-free optical biosensor employing resonant waveguide gratings. The characteristic kinetic curves upon NP exposure of cell-coated biosensor surfaces were recorded and compared to the kinetics of NP adsorption onto bare sensor surfaces. We demonstrated that from the above kinetic information, one can conclude about the interactions between the living cells and the NPs. Real-time biosensor data suggested the cellular uptake of the functionalized NPs by an active process. It was found that positively charged particles penetrate into the cells more effectively than negatively charged control particles, and the optimal size for the cellular uptake of the positively charged particles is around 5 nm. These conclusions were obtained in a cost-effective, fast, and high-throughput manner. The fate of the NPs was further revealed by electron microscopy on NP-exposed and subsequently fixed cells, well confirming the results obtained by the biosensor. Moreover, an ultrastructural study demonstrated the involvement of the endosomal–lysosomal system in the uptake of functionalized NPs and suggested the type of the internalization pathway.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b01546</identifier><identifier>PMID: 30022664</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Biosensing Techniques ; Gold ; Metal Nanoparticles ; Microscopy, Electron, Transmission</subject><ispartof>ACS applied materials &amp; interfaces, 2018-08, Vol.10 (32), p.26841-26850</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b723fc82c9b516d743ca93d5aa62a16bb2b0f82ff688af9ea51f5bc035399dd73</citedby><cites>FETCH-LOGICAL-a330t-b723fc82c9b516d743ca93d5aa62a16bb2b0f82ff688af9ea51f5bc035399dd73</cites><orcidid>0000-0001-8617-2302 ; 0000-0001-8065-6373 ; 0000-0001-7671-039X ; 0000-0002-2303-5965 ; 0000-0002-2526-1245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b01546$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b01546$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30022664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peter, Beatrix</creatorcontrib><creatorcontrib>Lagzi, Istvan</creatorcontrib><creatorcontrib>Teraji, Satoshi</creatorcontrib><creatorcontrib>Nakanishi, Hideyuki</creatorcontrib><creatorcontrib>Cervenak, Laszlo</creatorcontrib><creatorcontrib>Zámbó, Dániel</creatorcontrib><creatorcontrib>Deák, András</creatorcontrib><creatorcontrib>Molnár, Kinga</creatorcontrib><creatorcontrib>Truszka, Monika</creatorcontrib><creatorcontrib>Szekacs, Inna</creatorcontrib><creatorcontrib>Horvath, Robert</creatorcontrib><title>Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Functionalized nanoparticles (NPs) can penetrate into living cells and vesicles, opening up an extensive range of novel directions. For example, NPs are intensively employed in targeted drug delivery and biomedical imaging. However, the real-time kinetics and dynamics of NP–living cell interactions remained uncovered. In this study, we in situ monitored the cellular uptake of gold NPsfunctionalized with positively charged alkaline thiolinto surface-adhered cancer cells, by using a high-throughput label-free optical biosensor employing resonant waveguide gratings. The characteristic kinetic curves upon NP exposure of cell-coated biosensor surfaces were recorded and compared to the kinetics of NP adsorption onto bare sensor surfaces. We demonstrated that from the above kinetic information, one can conclude about the interactions between the living cells and the NPs. Real-time biosensor data suggested the cellular uptake of the functionalized NPs by an active process. It was found that positively charged particles penetrate into the cells more effectively than negatively charged control particles, and the optimal size for the cellular uptake of the positively charged particles is around 5 nm. These conclusions were obtained in a cost-effective, fast, and high-throughput manner. The fate of the NPs was further revealed by electron microscopy on NP-exposed and subsequently fixed cells, well confirming the results obtained by the biosensor. Moreover, an ultrastructural study demonstrated the involvement of the endosomal–lysosomal system in the uptake of functionalized NPs and suggested the type of the internalization pathway.</description><subject>Adsorption</subject><subject>Biosensing Techniques</subject><subject>Gold</subject><subject>Metal Nanoparticles</subject><subject>Microscopy, Electron, Transmission</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUlPHDEUhC2UiC1cOUY-Rkg98dLrMWmxSUOIFDi3nt02GHnsju0Gzb_hp-LRDNw4vTp8VaqnQuiUkgUljP4EGWFlFq0gtCrrPXRIu7IsWlaxLx-6LA_QUYxPhNSckWofHXBCGKvr8hC9XrukAshkvMNe478-mmSelV3j_hHCgxrxpbcj_gPOTxCSkVZF_GLSI-7BSRVwr6yN-MY7k3zIuFhjcNg4_M-kGS9BKFtcBKXw7ZTdYPFv46Ny0YfMjfgugIsrE-OmwLlVMoUsbowMPko_rb-hrxpsVCe7e4zuL87v-qtieXt53f9aFsA5SYVoGNeyZbITFa3HpuQSOj5WADUDWgvBBNEt07puW9CdgorqSkjCK95149jwY_RjmzsF_39WMQ25lMy_gVN-jgMjDaNtU3Y8o4stuukYg9LDFMwKwnqgZNisMmxXGXarZMP3XfYsVmr8wN9nyMDZFsjG4cnPweVXP0t7A_asmpQ</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Peter, Beatrix</creator><creator>Lagzi, Istvan</creator><creator>Teraji, Satoshi</creator><creator>Nakanishi, Hideyuki</creator><creator>Cervenak, Laszlo</creator><creator>Zámbó, Dániel</creator><creator>Deák, András</creator><creator>Molnár, Kinga</creator><creator>Truszka, Monika</creator><creator>Szekacs, Inna</creator><creator>Horvath, Robert</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8617-2302</orcidid><orcidid>https://orcid.org/0000-0001-8065-6373</orcidid><orcidid>https://orcid.org/0000-0001-7671-039X</orcidid><orcidid>https://orcid.org/0000-0002-2303-5965</orcidid><orcidid>https://orcid.org/0000-0002-2526-1245</orcidid></search><sort><creationdate>20180815</creationdate><title>Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy</title><author>Peter, Beatrix ; Lagzi, Istvan ; Teraji, Satoshi ; Nakanishi, Hideyuki ; Cervenak, Laszlo ; Zámbó, Dániel ; Deák, András ; Molnár, Kinga ; Truszka, Monika ; Szekacs, Inna ; Horvath, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b723fc82c9b516d743ca93d5aa62a16bb2b0f82ff688af9ea51f5bc035399dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Biosensing Techniques</topic><topic>Gold</topic><topic>Metal Nanoparticles</topic><topic>Microscopy, Electron, Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, Beatrix</creatorcontrib><creatorcontrib>Lagzi, Istvan</creatorcontrib><creatorcontrib>Teraji, Satoshi</creatorcontrib><creatorcontrib>Nakanishi, Hideyuki</creatorcontrib><creatorcontrib>Cervenak, Laszlo</creatorcontrib><creatorcontrib>Zámbó, Dániel</creatorcontrib><creatorcontrib>Deák, András</creatorcontrib><creatorcontrib>Molnár, Kinga</creatorcontrib><creatorcontrib>Truszka, Monika</creatorcontrib><creatorcontrib>Szekacs, Inna</creatorcontrib><creatorcontrib>Horvath, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, Beatrix</au><au>Lagzi, Istvan</au><au>Teraji, Satoshi</au><au>Nakanishi, Hideyuki</au><au>Cervenak, Laszlo</au><au>Zámbó, Dániel</au><au>Deák, András</au><au>Molnár, Kinga</au><au>Truszka, Monika</au><au>Szekacs, Inna</au><au>Horvath, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>10</volume><issue>32</issue><spage>26841</spage><epage>26850</epage><pages>26841-26850</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Functionalized nanoparticles (NPs) can penetrate into living cells and vesicles, opening up an extensive range of novel directions. For example, NPs are intensively employed in targeted drug delivery and biomedical imaging. However, the real-time kinetics and dynamics of NP–living cell interactions remained uncovered. In this study, we in situ monitored the cellular uptake of gold NPsfunctionalized with positively charged alkaline thiolinto surface-adhered cancer cells, by using a high-throughput label-free optical biosensor employing resonant waveguide gratings. The characteristic kinetic curves upon NP exposure of cell-coated biosensor surfaces were recorded and compared to the kinetics of NP adsorption onto bare sensor surfaces. We demonstrated that from the above kinetic information, one can conclude about the interactions between the living cells and the NPs. Real-time biosensor data suggested the cellular uptake of the functionalized NPs by an active process. It was found that positively charged particles penetrate into the cells more effectively than negatively charged control particles, and the optimal size for the cellular uptake of the positively charged particles is around 5 nm. These conclusions were obtained in a cost-effective, fast, and high-throughput manner. The fate of the NPs was further revealed by electron microscopy on NP-exposed and subsequently fixed cells, well confirming the results obtained by the biosensor. Moreover, an ultrastructural study demonstrated the involvement of the endosomal–lysosomal system in the uptake of functionalized NPs and suggested the type of the internalization pathway.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30022664</pmid><doi>10.1021/acsami.8b01546</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8617-2302</orcidid><orcidid>https://orcid.org/0000-0001-8065-6373</orcidid><orcidid>https://orcid.org/0000-0001-7671-039X</orcidid><orcidid>https://orcid.org/0000-0002-2303-5965</orcidid><orcidid>https://orcid.org/0000-0002-2526-1245</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-08, Vol.10 (32), p.26841-26850
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2072187493
source MEDLINE; ACS Publications
subjects Adsorption
Biosensing Techniques
Gold
Metal Nanoparticles
Microscopy, Electron, Transmission
title Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20Positively%20Charged%20Gold%20Nanoparticles%20with%20Cancer%20Cells%20Monitored%20by%20an%20in%20Situ%20Label-Free%20Optical%20Biosensor%20and%20Transmission%20Electron%20Microscopy&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Peter,%20Beatrix&rft.date=2018-08-15&rft.volume=10&rft.issue=32&rft.spage=26841&rft.epage=26850&rft.pages=26841-26850&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b01546&rft_dat=%3Cproquest_cross%3E2072187493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072187493&rft_id=info:pmid/30022664&rfr_iscdi=true