Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture

Optimisation of a capacitance-assisted electrochemical carbon-capture process is facilitated by the physical separation of the graphite and aluminium anode electrodes. This facilitates graphite electrode recycling and enables high current and increased aluminium surface area experiments which fix ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2018-08, Vol.47 (31), p.10447-10452
Hauptverfasser: Dowsett, Mark R, Lewis, Cassandra M, North, Michael, Parkin, Alison
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10452
container_issue 31
container_start_page 10447
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 47
creator Dowsett, Mark R
Lewis, Cassandra M
North, Michael
Parkin, Alison
description Optimisation of a capacitance-assisted electrochemical carbon-capture process is facilitated by the physical separation of the graphite and aluminium anode electrodes. This facilitates graphite electrode recycling and enables high current and increased aluminium surface area experiments which fix carbon at a higher rate and the same cell-voltage. Quantification of the H cathode byproduct shows that this process could be a net energy producer if recycled aluminium is used as the sacrificial anode.
doi_str_mv 10.1039/c8dt01783b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2072183626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084424530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c21b27b14fe1e6a00af5dedd056ecaa054df135dcfaf9a15f9830665fcc0d3d83</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFurF3-ABLyIEN2PbJIetdYPKAhSz2EzO2tTkmzc3UD996ZWe_A0c3hmmHkJOWf0hlExvYVcB8qyXJQHZMySLIunXCSH-56nI3Li_ZpSzqnkx2Qkti3LszF5m2-62rqq_YjCCiMPtsPImghUp6AKqgWMlfeVD6gjrBGCs7DCpgJVD8iVto10ZTeVxu1M6B2ekiOjao9nv3VC3h_ny9lzvHh9epndLWIQkoUYOCt5VrLEIMNUUaqM1Kg1lSmCUlQm2jAhNRhlpopJM80FTVNpAKgWOhcTcrXb2zn72aMPRVN5wLpWLdreF5xmw48i5elAL__Rte1dO1w3qDxJeCIFHdT1ToGz3js0ReeqRrmvgtFim3Qxyx-WP0nfD_jid2VfNqj39C9a8Q24j3m8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084424530</pqid></control><display><type>article</type><title>Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dowsett, Mark R ; Lewis, Cassandra M ; North, Michael ; Parkin, Alison</creator><creatorcontrib>Dowsett, Mark R ; Lewis, Cassandra M ; North, Michael ; Parkin, Alison</creatorcontrib><description>Optimisation of a capacitance-assisted electrochemical carbon-capture process is facilitated by the physical separation of the graphite and aluminium anode electrodes. This facilitates graphite electrode recycling and enables high current and increased aluminium surface area experiments which fix carbon at a higher rate and the same cell-voltage. Quantification of the H cathode byproduct shows that this process could be a net energy producer if recycled aluminium is used as the sacrificial anode.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c8dt01783b</identifier><identifier>PMID: 30022187</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aluminum ; Capacitance ; Carbon ; Carbon dioxide ; Carbon sequestration ; Electrodes ; Graphite ; Sacrificial anodes</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2018-08, Vol.47 (31), p.10447-10452</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c21b27b14fe1e6a00af5dedd056ecaa054df135dcfaf9a15f9830665fcc0d3d83</citedby><cites>FETCH-LOGICAL-c351t-c21b27b14fe1e6a00af5dedd056ecaa054df135dcfaf9a15f9830665fcc0d3d83</cites><orcidid>0000-0002-6668-5503 ; 0000-0003-4715-7200 ; 0000-0003-2313-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30022187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dowsett, Mark R</creatorcontrib><creatorcontrib>Lewis, Cassandra M</creatorcontrib><creatorcontrib>North, Michael</creatorcontrib><creatorcontrib>Parkin, Alison</creatorcontrib><title>Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Optimisation of a capacitance-assisted electrochemical carbon-capture process is facilitated by the physical separation of the graphite and aluminium anode electrodes. This facilitates graphite electrode recycling and enables high current and increased aluminium surface area experiments which fix carbon at a higher rate and the same cell-voltage. Quantification of the H cathode byproduct shows that this process could be a net energy producer if recycled aluminium is used as the sacrificial anode.</description><subject>Aluminum</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Electrodes</subject><subject>Graphite</subject><subject>Sacrificial anodes</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFFurF3-ABLyIEN2PbJIetdYPKAhSz2EzO2tTkmzc3UD996ZWe_A0c3hmmHkJOWf0hlExvYVcB8qyXJQHZMySLIunXCSH-56nI3Li_ZpSzqnkx2Qkti3LszF5m2-62rqq_YjCCiMPtsPImghUp6AKqgWMlfeVD6gjrBGCs7DCpgJVD8iVto10ZTeVxu1M6B2ekiOjao9nv3VC3h_ny9lzvHh9epndLWIQkoUYOCt5VrLEIMNUUaqM1Kg1lSmCUlQm2jAhNRhlpopJM80FTVNpAKgWOhcTcrXb2zn72aMPRVN5wLpWLdreF5xmw48i5elAL__Rte1dO1w3qDxJeCIFHdT1ToGz3js0ReeqRrmvgtFim3Qxyx-WP0nfD_jid2VfNqj39C9a8Q24j3m8</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Dowsett, Mark R</creator><creator>Lewis, Cassandra M</creator><creator>North, Michael</creator><creator>Parkin, Alison</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6668-5503</orcidid><orcidid>https://orcid.org/0000-0003-4715-7200</orcidid><orcidid>https://orcid.org/0000-0003-2313-416X</orcidid></search><sort><creationdate>20180821</creationdate><title>Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture</title><author>Dowsett, Mark R ; Lewis, Cassandra M ; North, Michael ; Parkin, Alison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c21b27b14fe1e6a00af5dedd056ecaa054df135dcfaf9a15f9830665fcc0d3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Electrodes</topic><topic>Graphite</topic><topic>Sacrificial anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowsett, Mark R</creatorcontrib><creatorcontrib>Lewis, Cassandra M</creatorcontrib><creatorcontrib>North, Michael</creatorcontrib><creatorcontrib>Parkin, Alison</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowsett, Mark R</au><au>Lewis, Cassandra M</au><au>North, Michael</au><au>Parkin, Alison</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>47</volume><issue>31</issue><spage>10447</spage><epage>10452</epage><pages>10447-10452</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Optimisation of a capacitance-assisted electrochemical carbon-capture process is facilitated by the physical separation of the graphite and aluminium anode electrodes. This facilitates graphite electrode recycling and enables high current and increased aluminium surface area experiments which fix carbon at a higher rate and the same cell-voltage. Quantification of the H cathode byproduct shows that this process could be a net energy producer if recycled aluminium is used as the sacrificial anode.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30022187</pmid><doi>10.1039/c8dt01783b</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6668-5503</orcidid><orcidid>https://orcid.org/0000-0003-4715-7200</orcidid><orcidid>https://orcid.org/0000-0003-2313-416X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2018-08, Vol.47 (31), p.10447-10452
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2072183626
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aluminum
Capacitance
Carbon
Carbon dioxide
Carbon sequestration
Electrodes
Graphite
Sacrificial anodes
title Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20scope%20of%20capacitance-assisted%20electrochemical%20carbon%20dioxide%20capture&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Dowsett,%20Mark%20R&rft.date=2018-08-21&rft.volume=47&rft.issue=31&rft.spage=10447&rft.epage=10452&rft.pages=10447-10452&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c8dt01783b&rft_dat=%3Cproquest_cross%3E2084424530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084424530&rft_id=info:pmid/30022187&rfr_iscdi=true