Two morbidity indices developed in a nationwide population permitted performant outcome-specific severity adjustment

The objective of the study was to develop and validate two outcome-specific morbidity indices in a population-based setting: the Mortality-Related Morbidity Index (MRMI) predictive of all-cause mortality and the Expenditure-Related Morbidity Index (ERMI) predictive of health care expenditure. A coho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2018-11, Vol.103, p.60-70
Hauptverfasser: Constantinou, Panayotis, Tuppin, Philippe, Fagot-Campagna, Anne, Gastaldi-Ménager, Christelle, Schellevis, François G., Pelletier-Fleury, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 60
container_title Journal of clinical epidemiology
container_volume 103
creator Constantinou, Panayotis
Tuppin, Philippe
Fagot-Campagna, Anne
Gastaldi-Ménager, Christelle
Schellevis, François G.
Pelletier-Fleury, Nathalie
description The objective of the study was to develop and validate two outcome-specific morbidity indices in a population-based setting: the Mortality-Related Morbidity Index (MRMI) predictive of all-cause mortality and the Expenditure-Related Morbidity Index (ERMI) predictive of health care expenditure. A cohort including all beneficiaries of the main French health insurance scheme aged 65 years or older on December 31, 2013 (N = 7,672,111), was randomly split into a development population for index elaboration and a validation population for predictive performance assessment. Age, gender, and selected lists of conditions identified through standard algorithms available in the French health insurance database (SNDS) were used as predictors for 2-year mortality and 2-year health care expenditure in separate models. Overall performance and calibration of the MRMI and ERMI were measured and compared to various versions of the Charlson Comorbidity Index (CCI). The MRMI included 16 conditions, was more discriminant than the age-adjusted CCI (c-statistic: 0.825 [95% confidence interval: 0.824–0.826] vs. 0.800 [0.799–0.801]), and better calibrated. The ERMI included 19 conditions, explained more variance than the cost-adapted CCI (21.8% vs. 13.0%), and was better calibrated. The proposed MRMI and ERMI indices are performant tools to account for health-state severity according to outcomes of interest.
doi_str_mv 10.1016/j.jclinepi.2018.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2071572028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435618300921</els_id><sourcerecordid>2071572028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-e4dba27e32b32a1bfb9ee58ad83c64ff1d4d08a6bffd20f6b7f1767a806cbe4a3</originalsourceid><addsrcrecordid>eNqFkcFu3SAQRVHVqnlN-guRpW66sTtgG_CuVZSmlSJ1k6wRhkHCso0LOFH-vry-pItsumIYnbmgOYRcUmgoUP5laiYz-xU33zCgsgHRALRvyIFKIet-YPQtOYAc-rpre35GPqQ0AVABon9PztpSct61B5LvHkO1hDh66_NT5VfrDabK4gPOYUNbOpWuVp19WB-9xWoL2z7_vVYbxsXnXKBSuRAXveYq7NmEBeu0ofHOmyqVqHjM1nbaU15wzRfkndNzwo_P5zm5_359d_Wjvv118_Pq221tegq5xs6Omgls2dgyTUc3Doi91Fa2hnfOUdtZkJqPzlkGjo_CUcGFlsDNiJ1uz8nnU-4Ww-8dU1aLTwbnWa8Y9qQYCNoLBkwW9NMrdAp7XMvvFKOUAwyD7ArFT5SJIaWITm3RLzo-KQrq6EVN6sWLOnpRIFTxUgYvn-P3cUH7b-xFRAG-ngAs-3jwGFUyHleD1kc0Wdng__fGH76Spfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116009984</pqid></control><display><type>article</type><title>Two morbidity indices developed in a nationwide population permitted performant outcome-specific severity adjustment</title><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Constantinou, Panayotis ; Tuppin, Philippe ; Fagot-Campagna, Anne ; Gastaldi-Ménager, Christelle ; Schellevis, François G. ; Pelletier-Fleury, Nathalie</creator><creatorcontrib>Constantinou, Panayotis ; Tuppin, Philippe ; Fagot-Campagna, Anne ; Gastaldi-Ménager, Christelle ; Schellevis, François G. ; Pelletier-Fleury, Nathalie</creatorcontrib><description>The objective of the study was to develop and validate two outcome-specific morbidity indices in a population-based setting: the Mortality-Related Morbidity Index (MRMI) predictive of all-cause mortality and the Expenditure-Related Morbidity Index (ERMI) predictive of health care expenditure. A cohort including all beneficiaries of the main French health insurance scheme aged 65 years or older on December 31, 2013 (N = 7,672,111), was randomly split into a development population for index elaboration and a validation population for predictive performance assessment. Age, gender, and selected lists of conditions identified through standard algorithms available in the French health insurance database (SNDS) were used as predictors for 2-year mortality and 2-year health care expenditure in separate models. Overall performance and calibration of the MRMI and ERMI were measured and compared to various versions of the Charlson Comorbidity Index (CCI). The MRMI included 16 conditions, was more discriminant than the age-adjusted CCI (c-statistic: 0.825 [95% confidence interval: 0.824–0.826] vs. 0.800 [0.799–0.801]), and better calibrated. The ERMI included 19 conditions, explained more variance than the cost-adapted CCI (21.8% vs. 13.0%), and was better calibrated. The proposed MRMI and ERMI indices are performant tools to account for health-state severity according to outcomes of interest.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2018.07.003</identifier><identifier>PMID: 30016643</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age ; Alzheimer's disease ; Asthma ; Calibration ; Cancer ; Cardiac arrhythmia ; Cardiovascular disease ; Comorbidity ; Confidence intervals ; Dementia ; Diabetes ; Drug abuse ; Emotional disorders ; Epidemiology ; Expenditures ; Gender ; Health care ; Health expenditure ; Health information systems ; Health insurance ; Heart failure ; HIV ; Human immunodeficiency virus ; Information systems ; Insurance ; Insurance coverage ; Morbidity ; Morbidity indices ; Mortality ; Multimorbidity ; Paralysis ; Parkinson's disease ; Performance assessment ; Performance prediction ; Population ; Respiratory diseases ; Rheumatoid arthritis ; Risk-adjustment ; Statistical analysis</subject><ispartof>Journal of clinical epidemiology, 2018-11, Vol.103, p.60-70</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-e4dba27e32b32a1bfb9ee58ad83c64ff1d4d08a6bffd20f6b7f1767a806cbe4a3</citedby><cites>FETCH-LOGICAL-c510t-e4dba27e32b32a1bfb9ee58ad83c64ff1d4d08a6bffd20f6b7f1767a806cbe4a3</cites><orcidid>0000-0001-5698-9215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2116009984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30016643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantinou, Panayotis</creatorcontrib><creatorcontrib>Tuppin, Philippe</creatorcontrib><creatorcontrib>Fagot-Campagna, Anne</creatorcontrib><creatorcontrib>Gastaldi-Ménager, Christelle</creatorcontrib><creatorcontrib>Schellevis, François G.</creatorcontrib><creatorcontrib>Pelletier-Fleury, Nathalie</creatorcontrib><title>Two morbidity indices developed in a nationwide population permitted performant outcome-specific severity adjustment</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>The objective of the study was to develop and validate two outcome-specific morbidity indices in a population-based setting: the Mortality-Related Morbidity Index (MRMI) predictive of all-cause mortality and the Expenditure-Related Morbidity Index (ERMI) predictive of health care expenditure. A cohort including all beneficiaries of the main French health insurance scheme aged 65 years or older on December 31, 2013 (N = 7,672,111), was randomly split into a development population for index elaboration and a validation population for predictive performance assessment. Age, gender, and selected lists of conditions identified through standard algorithms available in the French health insurance database (SNDS) were used as predictors for 2-year mortality and 2-year health care expenditure in separate models. Overall performance and calibration of the MRMI and ERMI were measured and compared to various versions of the Charlson Comorbidity Index (CCI). The MRMI included 16 conditions, was more discriminant than the age-adjusted CCI (c-statistic: 0.825 [95% confidence interval: 0.824–0.826] vs. 0.800 [0.799–0.801]), and better calibrated. The ERMI included 19 conditions, explained more variance than the cost-adapted CCI (21.8% vs. 13.0%), and was better calibrated. The proposed MRMI and ERMI indices are performant tools to account for health-state severity according to outcomes of interest.</description><subject>Age</subject><subject>Alzheimer's disease</subject><subject>Asthma</subject><subject>Calibration</subject><subject>Cancer</subject><subject>Cardiac arrhythmia</subject><subject>Cardiovascular disease</subject><subject>Comorbidity</subject><subject>Confidence intervals</subject><subject>Dementia</subject><subject>Diabetes</subject><subject>Drug abuse</subject><subject>Emotional disorders</subject><subject>Epidemiology</subject><subject>Expenditures</subject><subject>Gender</subject><subject>Health care</subject><subject>Health expenditure</subject><subject>Health information systems</subject><subject>Health insurance</subject><subject>Heart failure</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Information systems</subject><subject>Insurance</subject><subject>Insurance coverage</subject><subject>Morbidity</subject><subject>Morbidity indices</subject><subject>Mortality</subject><subject>Multimorbidity</subject><subject>Paralysis</subject><subject>Parkinson's disease</subject><subject>Performance assessment</subject><subject>Performance prediction</subject><subject>Population</subject><subject>Respiratory diseases</subject><subject>Rheumatoid arthritis</subject><subject>Risk-adjustment</subject><subject>Statistical analysis</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu3SAQRVHVqnlN-guRpW66sTtgG_CuVZSmlSJ1k6wRhkHCso0LOFH-vry-pItsumIYnbmgOYRcUmgoUP5laiYz-xU33zCgsgHRALRvyIFKIet-YPQtOYAc-rpre35GPqQ0AVABon9PztpSct61B5LvHkO1hDh66_NT5VfrDabK4gPOYUNbOpWuVp19WB-9xWoL2z7_vVYbxsXnXKBSuRAXveYq7NmEBeu0ofHOmyqVqHjM1nbaU15wzRfkndNzwo_P5zm5_359d_Wjvv118_Pq221tegq5xs6Omgls2dgyTUc3Doi91Fa2hnfOUdtZkJqPzlkGjo_CUcGFlsDNiJ1uz8nnU-4Ww-8dU1aLTwbnWa8Y9qQYCNoLBkwW9NMrdAp7XMvvFKOUAwyD7ArFT5SJIaWITm3RLzo-KQrq6EVN6sWLOnpRIFTxUgYvn-P3cUH7b-xFRAG-ngAs-3jwGFUyHleD1kc0Wdng__fGH76Spfg</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Constantinou, Panayotis</creator><creator>Tuppin, Philippe</creator><creator>Fagot-Campagna, Anne</creator><creator>Gastaldi-Ménager, Christelle</creator><creator>Schellevis, François G.</creator><creator>Pelletier-Fleury, Nathalie</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5698-9215</orcidid></search><sort><creationdate>201811</creationdate><title>Two morbidity indices developed in a nationwide population permitted performant outcome-specific severity adjustment</title><author>Constantinou, Panayotis ; Tuppin, Philippe ; Fagot-Campagna, Anne ; Gastaldi-Ménager, Christelle ; Schellevis, François G. ; Pelletier-Fleury, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-e4dba27e32b32a1bfb9ee58ad83c64ff1d4d08a6bffd20f6b7f1767a806cbe4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age</topic><topic>Alzheimer's disease</topic><topic>Asthma</topic><topic>Calibration</topic><topic>Cancer</topic><topic>Cardiac arrhythmia</topic><topic>Cardiovascular disease</topic><topic>Comorbidity</topic><topic>Confidence intervals</topic><topic>Dementia</topic><topic>Diabetes</topic><topic>Drug abuse</topic><topic>Emotional disorders</topic><topic>Epidemiology</topic><topic>Expenditures</topic><topic>Gender</topic><topic>Health care</topic><topic>Health expenditure</topic><topic>Health information systems</topic><topic>Health insurance</topic><topic>Heart failure</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Information systems</topic><topic>Insurance</topic><topic>Insurance coverage</topic><topic>Morbidity</topic><topic>Morbidity indices</topic><topic>Mortality</topic><topic>Multimorbidity</topic><topic>Paralysis</topic><topic>Parkinson's disease</topic><topic>Performance assessment</topic><topic>Performance prediction</topic><topic>Population</topic><topic>Respiratory diseases</topic><topic>Rheumatoid arthritis</topic><topic>Risk-adjustment</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantinou, Panayotis</creatorcontrib><creatorcontrib>Tuppin, Philippe</creatorcontrib><creatorcontrib>Fagot-Campagna, Anne</creatorcontrib><creatorcontrib>Gastaldi-Ménager, Christelle</creatorcontrib><creatorcontrib>Schellevis, François G.</creatorcontrib><creatorcontrib>Pelletier-Fleury, Nathalie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantinou, Panayotis</au><au>Tuppin, Philippe</au><au>Fagot-Campagna, Anne</au><au>Gastaldi-Ménager, Christelle</au><au>Schellevis, François G.</au><au>Pelletier-Fleury, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two morbidity indices developed in a nationwide population permitted performant outcome-specific severity adjustment</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2018-11</date><risdate>2018</risdate><volume>103</volume><spage>60</spage><epage>70</epage><pages>60-70</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>The objective of the study was to develop and validate two outcome-specific morbidity indices in a population-based setting: the Mortality-Related Morbidity Index (MRMI) predictive of all-cause mortality and the Expenditure-Related Morbidity Index (ERMI) predictive of health care expenditure. A cohort including all beneficiaries of the main French health insurance scheme aged 65 years or older on December 31, 2013 (N = 7,672,111), was randomly split into a development population for index elaboration and a validation population for predictive performance assessment. Age, gender, and selected lists of conditions identified through standard algorithms available in the French health insurance database (SNDS) were used as predictors for 2-year mortality and 2-year health care expenditure in separate models. Overall performance and calibration of the MRMI and ERMI were measured and compared to various versions of the Charlson Comorbidity Index (CCI). The MRMI included 16 conditions, was more discriminant than the age-adjusted CCI (c-statistic: 0.825 [95% confidence interval: 0.824–0.826] vs. 0.800 [0.799–0.801]), and better calibrated. The ERMI included 19 conditions, explained more variance than the cost-adapted CCI (21.8% vs. 13.0%), and was better calibrated. The proposed MRMI and ERMI indices are performant tools to account for health-state severity according to outcomes of interest.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30016643</pmid><doi>10.1016/j.jclinepi.2018.07.003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5698-9215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2018-11, Vol.103, p.60-70
issn 0895-4356
1878-5921
language eng
recordid cdi_proquest_miscellaneous_2071572028
source Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Age
Alzheimer's disease
Asthma
Calibration
Cancer
Cardiac arrhythmia
Cardiovascular disease
Comorbidity
Confidence intervals
Dementia
Diabetes
Drug abuse
Emotional disorders
Epidemiology
Expenditures
Gender
Health care
Health expenditure
Health information systems
Health insurance
Heart failure
HIV
Human immunodeficiency virus
Information systems
Insurance
Insurance coverage
Morbidity
Morbidity indices
Mortality
Multimorbidity
Paralysis
Parkinson's disease
Performance assessment
Performance prediction
Population
Respiratory diseases
Rheumatoid arthritis
Risk-adjustment
Statistical analysis
title Two morbidity indices developed in a nationwide population permitted performant outcome-specific severity adjustment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20morbidity%20indices%20developed%20in%20a%20nationwide%20population%20permitted%20performant%20outcome-specific%20severity%20adjustment&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Constantinou,%20Panayotis&rft.date=2018-11&rft.volume=103&rft.spage=60&rft.epage=70&rft.pages=60-70&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2018.07.003&rft_dat=%3Cproquest_cross%3E2071572028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116009984&rft_id=info:pmid/30016643&rft_els_id=S0895435618300921&rfr_iscdi=true