Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate

The oxidation of thiol groups in proteins is a common event in biochemical processes involving disulfide bond formation and in response to an increased level of reactive oxygen species. It has been widely accepted that the oxidation of a cysteine side chain is initiated by the formation of cysteine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-04, Vol.105 (17), p.6238-6242
Hauptverfasser: Nakamura, Tsutomu, Yamamoto, Takahiko, Abe, Manabu, Matsumura, Hiroyoshi, Hagihara, Yoshihisa, Goto, Tadashi, Yamaguchi, Takafumi, Inoue, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6242
container_issue 17
container_start_page 6238
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Nakamura, Tsutomu
Yamamoto, Takahiko
Abe, Manabu
Matsumura, Hiroyoshi
Hagihara, Yoshihisa
Goto, Tadashi
Yamaguchi, Takafumi
Inoue, Tsuyoshi
description The oxidation of thiol groups in proteins is a common event in biochemical processes involving disulfide bond formation and in response to an increased level of reactive oxygen species. It has been widely accepted that the oxidation of a cysteine side chain is initiated by the formation of cysteine sulfenic acid (Cys-SOH). Here, we demonstrate a mechanism of thiol oxidation through a hypervalent sulfur intermediate by presenting crystallographic evidence from an archaeal peroxiredoxin (Prx), the thioredoxin peroxidase from Aeropyrum pernix K1 (ApTPx). The reaction of Prx, which is the reduction of a peroxide, depends on the redox active cysteine side chains. Oxidation by hydrogen peroxide converted the active site peroxidatic Cys-50 of ApTPx to a cysteine sulfenic acid derivative, followed by further oxidation to cysteine sulfinic and sulfonic acids. The crystal structure of the cysteine sulfenic acid derivative was refined to 1.77 Å resolution with Rcryst and Rfree values of 18.8% and 22.0%, respectively. The refined structure, together with quantum chemical calculations, revealed that the sulfenic acid derivative is a type of sulfurane, a hypervalent sulfur compound, and that the Sγ atom is covalently linked to the Nδ¹ atom of the neighboring His-42. The reaction mechanism is revealed by the hydrogen bond network around the peroxidatic cysteine and the motion of the flexible loop covering the active site and by quantum chemical calculations. This study provides evidence that a hypervalent sulfur compound occupies an important position in biochemical processes.
doi_str_mv 10.1073/pnas.0709822105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20711804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25461774</jstor_id><sourcerecordid>25461774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-69683ac3f4cad2567c27e22e7c593b2ac380ab8ee926c81cc0ad4633b735b0633</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw5gSsOFRc0o6_7UslVEFBqugBera8Xm_jyFkHezdK_3scJWqAA1xsS-83b2b8EHqN4RyDpBfrwZZzkKAVIRj4EzTDoPFcMA1P0QyAyLlihJ2gF6UsAUBzBc_RCVaMigrN0LfbbejsGNLQpL6x2S2st7FZ-5y2IfuunkMThk2KG18a2yweqrSx0Q9jU6bYT7mqo88r3wU7-pfoWW9j8a8O9ym6-_zpx9WX-c3t9derjzdzJ7Aa50ILRa2jPXO2I1xIR6QnxEvHNW1JVRTYVnmviXAKOwe2Y4LSVlLeQn2cosu973pqa2tXx8k2mnUOK5sfTLLB_KkMYWHu08YQyrVUshqcHQxy-jn5MppVKM7HaAefpmKExgIUxv8FCUiMFbAKvv8LXKYpD_UXKoMZcE51hS72kMuplOz7x5ExmF2iZpeoOSZaK97-vumRP0RYgXcHYFd5tOMGSyMIVZX48G_C9FOMo9-OFX2zR5dlTPmRJZwJLCU7NuttMvY-h2Luvtf1KIDSmDJGfwGQW8jl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201405539</pqid></control><display><type>article</type><title>Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nakamura, Tsutomu ; Yamamoto, Takahiko ; Abe, Manabu ; Matsumura, Hiroyoshi ; Hagihara, Yoshihisa ; Goto, Tadashi ; Yamaguchi, Takafumi ; Inoue, Tsuyoshi</creator><creatorcontrib>Nakamura, Tsutomu ; Yamamoto, Takahiko ; Abe, Manabu ; Matsumura, Hiroyoshi ; Hagihara, Yoshihisa ; Goto, Tadashi ; Yamaguchi, Takafumi ; Inoue, Tsuyoshi</creatorcontrib><description>The oxidation of thiol groups in proteins is a common event in biochemical processes involving disulfide bond formation and in response to an increased level of reactive oxygen species. It has been widely accepted that the oxidation of a cysteine side chain is initiated by the formation of cysteine sulfenic acid (Cys-SOH). Here, we demonstrate a mechanism of thiol oxidation through a hypervalent sulfur intermediate by presenting crystallographic evidence from an archaeal peroxiredoxin (Prx), the thioredoxin peroxidase from Aeropyrum pernix K1 (ApTPx). The reaction of Prx, which is the reduction of a peroxide, depends on the redox active cysteine side chains. Oxidation by hydrogen peroxide converted the active site peroxidatic Cys-50 of ApTPx to a cysteine sulfenic acid derivative, followed by further oxidation to cysteine sulfinic and sulfonic acids. The crystal structure of the cysteine sulfenic acid derivative was refined to 1.77 Å resolution with Rcryst and Rfree values of 18.8% and 22.0%, respectively. The refined structure, together with quantum chemical calculations, revealed that the sulfenic acid derivative is a type of sulfurane, a hypervalent sulfur compound, and that the Sγ atom is covalently linked to the Nδ¹ atom of the neighboring His-42. The reaction mechanism is revealed by the hydrogen bond network around the peroxidatic cysteine and the motion of the flexible loop covering the active site and by quantum chemical calculations. This study provides evidence that a hypervalent sulfur compound occupies an important position in biochemical processes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0709822105</identifier><identifier>PMID: 18436649</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aeropyrum - chemistry ; Aeropyrum pernix ; Amino acids ; Archaeal Proteins - chemistry ; Archaeal Proteins - metabolism ; Atoms ; Biochemistry ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Cysteine - chemistry ; Hydrogen ; Hydrogen peroxide ; Imidazoles ; Models, Molecular ; Molecular Conformation ; Nitrogen ; Oxidation ; Oxidation-Reduction ; Peroxides ; Peroxiredoxins - chemistry ; Peroxiredoxins - metabolism ; Physical Sciences ; Proteins ; Sulfenic acids ; Sulfide compounds ; Sulfur ; Sulfur - chemistry ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-04, Vol.105 (17), p.6238-6242</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 29, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-69683ac3f4cad2567c27e22e7c593b2ac380ab8ee926c81cc0ad4633b735b0633</citedby><cites>FETCH-LOGICAL-c618t-69683ac3f4cad2567c27e22e7c593b2ac380ab8ee926c81cc0ad4633b735b0633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25461774$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25461774$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18436649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Tsutomu</creatorcontrib><creatorcontrib>Yamamoto, Takahiko</creatorcontrib><creatorcontrib>Abe, Manabu</creatorcontrib><creatorcontrib>Matsumura, Hiroyoshi</creatorcontrib><creatorcontrib>Hagihara, Yoshihisa</creatorcontrib><creatorcontrib>Goto, Tadashi</creatorcontrib><creatorcontrib>Yamaguchi, Takafumi</creatorcontrib><creatorcontrib>Inoue, Tsuyoshi</creatorcontrib><title>Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The oxidation of thiol groups in proteins is a common event in biochemical processes involving disulfide bond formation and in response to an increased level of reactive oxygen species. It has been widely accepted that the oxidation of a cysteine side chain is initiated by the formation of cysteine sulfenic acid (Cys-SOH). Here, we demonstrate a mechanism of thiol oxidation through a hypervalent sulfur intermediate by presenting crystallographic evidence from an archaeal peroxiredoxin (Prx), the thioredoxin peroxidase from Aeropyrum pernix K1 (ApTPx). The reaction of Prx, which is the reduction of a peroxide, depends on the redox active cysteine side chains. Oxidation by hydrogen peroxide converted the active site peroxidatic Cys-50 of ApTPx to a cysteine sulfenic acid derivative, followed by further oxidation to cysteine sulfinic and sulfonic acids. The crystal structure of the cysteine sulfenic acid derivative was refined to 1.77 Å resolution with Rcryst and Rfree values of 18.8% and 22.0%, respectively. The refined structure, together with quantum chemical calculations, revealed that the sulfenic acid derivative is a type of sulfurane, a hypervalent sulfur compound, and that the Sγ atom is covalently linked to the Nδ¹ atom of the neighboring His-42. The reaction mechanism is revealed by the hydrogen bond network around the peroxidatic cysteine and the motion of the flexible loop covering the active site and by quantum chemical calculations. This study provides evidence that a hypervalent sulfur compound occupies an important position in biochemical processes.</description><subject>Aeropyrum - chemistry</subject><subject>Aeropyrum pernix</subject><subject>Amino acids</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - metabolism</subject><subject>Atoms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Imidazoles</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxides</subject><subject>Peroxiredoxins - chemistry</subject><subject>Peroxiredoxins - metabolism</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Sulfenic acids</subject><subject>Sulfide compounds</subject><subject>Sulfur</subject><subject>Sulfur - chemistry</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw5gSsOFRc0o6_7UslVEFBqugBera8Xm_jyFkHezdK_3scJWqAA1xsS-83b2b8EHqN4RyDpBfrwZZzkKAVIRj4EzTDoPFcMA1P0QyAyLlihJ2gF6UsAUBzBc_RCVaMigrN0LfbbejsGNLQpL6x2S2st7FZ-5y2IfuunkMThk2KG18a2yweqrSx0Q9jU6bYT7mqo88r3wU7-pfoWW9j8a8O9ym6-_zpx9WX-c3t9derjzdzJ7Aa50ILRa2jPXO2I1xIR6QnxEvHNW1JVRTYVnmviXAKOwe2Y4LSVlLeQn2cosu973pqa2tXx8k2mnUOK5sfTLLB_KkMYWHu08YQyrVUshqcHQxy-jn5MppVKM7HaAefpmKExgIUxv8FCUiMFbAKvv8LXKYpD_UXKoMZcE51hS72kMuplOz7x5ExmF2iZpeoOSZaK97-vumRP0RYgXcHYFd5tOMGSyMIVZX48G_C9FOMo9-OFX2zR5dlTPmRJZwJLCU7NuttMvY-h2Luvtf1KIDSmDJGfwGQW8jl</recordid><startdate>20080429</startdate><enddate>20080429</enddate><creator>Nakamura, Tsutomu</creator><creator>Yamamoto, Takahiko</creator><creator>Abe, Manabu</creator><creator>Matsumura, Hiroyoshi</creator><creator>Hagihara, Yoshihisa</creator><creator>Goto, Tadashi</creator><creator>Yamaguchi, Takafumi</creator><creator>Inoue, Tsuyoshi</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080429</creationdate><title>Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate</title><author>Nakamura, Tsutomu ; Yamamoto, Takahiko ; Abe, Manabu ; Matsumura, Hiroyoshi ; Hagihara, Yoshihisa ; Goto, Tadashi ; Yamaguchi, Takafumi ; Inoue, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-69683ac3f4cad2567c27e22e7c593b2ac380ab8ee926c81cc0ad4633b735b0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aeropyrum - chemistry</topic><topic>Aeropyrum pernix</topic><topic>Amino acids</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - metabolism</topic><topic>Atoms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Imidazoles</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxides</topic><topic>Peroxiredoxins - chemistry</topic><topic>Peroxiredoxins - metabolism</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Sulfenic acids</topic><topic>Sulfide compounds</topic><topic>Sulfur</topic><topic>Sulfur - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Tsutomu</creatorcontrib><creatorcontrib>Yamamoto, Takahiko</creatorcontrib><creatorcontrib>Abe, Manabu</creatorcontrib><creatorcontrib>Matsumura, Hiroyoshi</creatorcontrib><creatorcontrib>Hagihara, Yoshihisa</creatorcontrib><creatorcontrib>Goto, Tadashi</creatorcontrib><creatorcontrib>Yamaguchi, Takafumi</creatorcontrib><creatorcontrib>Inoue, Tsuyoshi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Tsutomu</au><au>Yamamoto, Takahiko</au><au>Abe, Manabu</au><au>Matsumura, Hiroyoshi</au><au>Hagihara, Yoshihisa</au><au>Goto, Tadashi</au><au>Yamaguchi, Takafumi</au><au>Inoue, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-04-29</date><risdate>2008</risdate><volume>105</volume><issue>17</issue><spage>6238</spage><epage>6242</epage><pages>6238-6242</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The oxidation of thiol groups in proteins is a common event in biochemical processes involving disulfide bond formation and in response to an increased level of reactive oxygen species. It has been widely accepted that the oxidation of a cysteine side chain is initiated by the formation of cysteine sulfenic acid (Cys-SOH). Here, we demonstrate a mechanism of thiol oxidation through a hypervalent sulfur intermediate by presenting crystallographic evidence from an archaeal peroxiredoxin (Prx), the thioredoxin peroxidase from Aeropyrum pernix K1 (ApTPx). The reaction of Prx, which is the reduction of a peroxide, depends on the redox active cysteine side chains. Oxidation by hydrogen peroxide converted the active site peroxidatic Cys-50 of ApTPx to a cysteine sulfenic acid derivative, followed by further oxidation to cysteine sulfinic and sulfonic acids. The crystal structure of the cysteine sulfenic acid derivative was refined to 1.77 Å resolution with Rcryst and Rfree values of 18.8% and 22.0%, respectively. The refined structure, together with quantum chemical calculations, revealed that the sulfenic acid derivative is a type of sulfurane, a hypervalent sulfur compound, and that the Sγ atom is covalently linked to the Nδ¹ atom of the neighboring His-42. The reaction mechanism is revealed by the hydrogen bond network around the peroxidatic cysteine and the motion of the flexible loop covering the active site and by quantum chemical calculations. This study provides evidence that a hypervalent sulfur compound occupies an important position in biochemical processes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18436649</pmid><doi>10.1073/pnas.0709822105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-04, Vol.105 (17), p.6238-6242
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_20711804
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aeropyrum - chemistry
Aeropyrum pernix
Amino acids
Archaeal Proteins - chemistry
Archaeal Proteins - metabolism
Atoms
Biochemistry
Biological Sciences
Crystal structure
Crystallography, X-Ray
Cysteine - chemistry
Hydrogen
Hydrogen peroxide
Imidazoles
Models, Molecular
Molecular Conformation
Nitrogen
Oxidation
Oxidation-Reduction
Peroxides
Peroxiredoxins - chemistry
Peroxiredoxins - metabolism
Physical Sciences
Proteins
Sulfenic acids
Sulfide compounds
Sulfur
Sulfur - chemistry
Thermodynamics
title Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20archaeal%20peroxiredoxin%20involves%20a%20hypervalent%20sulfur%20intermediate&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nakamura,%20Tsutomu&rft.date=2008-04-29&rft.volume=105&rft.issue=17&rft.spage=6238&rft.epage=6242&rft.pages=6238-6242&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0709822105&rft_dat=%3Cjstor_proqu%3E25461774%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201405539&rft_id=info:pmid/18436649&rft_jstor_id=25461774&rfr_iscdi=true