Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response

Continuous X‐ray fluorescence scanning of middle Eocene (∼46 Ma) core M0002A‐55X (∼236–241 m composite depth), recovered during Integrated Ocean Drilling Program Expedition 302, revealed a strong cyclical signal in some major and trace geochemical elements. We performed a multiproxy study of the sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Paleoceanography 2008-03, Vol.23 (1), p.np-n/a
Hauptverfasser: Sangiorgi, Francesca, van Soelen, Els E., Spofforth, David J. A., Pälike, Heiko, Stickley, Catherine E., St. John, Kristen, Koç, Nalan, Schouten, Stefan, Sinninghe Damsté, Jaap S., Brinkhuis, Henk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Paleoceanography
container_volume 23
creator Sangiorgi, Francesca
van Soelen, Els E.
Spofforth, David J. A.
Pälike, Heiko
Stickley, Catherine E.
St. John, Kristen
Koç, Nalan
Schouten, Stefan
Sinninghe Damsté, Jaap S.
Brinkhuis, Henk
description Continuous X‐ray fluorescence scanning of middle Eocene (∼46 Ma) core M0002A‐55X (∼236–241 m composite depth), recovered during Integrated Ocean Drilling Program Expedition 302, revealed a strong cyclical signal in some major and trace geochemical elements. We performed a multiproxy study of the same core, which included organic geochemical, sedimentological, and biological parameters, and integrated our results with available geochemical and physical properties data. The target was to look for cyclicity in the several proxies, investigate their frequency, and understand the environmental response to the potential forcing. Results indicate that a higher terrigenous component corresponds to lower organic carbon concentration, smaller contributions by angiosperm pollen and spores, organic‐walled dinoflagellate cysts, and chrysophyte cysts (lower productivity, shorter growing season for flowering plants, and lower stratification) but higher contributions by bisaccate pollen and diatoms (drier conditions on land, more marine conditions) and higher terrigenous sand (ice‐rafted debris (IRD)). Our investigation shows that physical proxy parameters hold cyclicity with periods of about 50 and 100 cm and that these frequency components are compatible with a Milankovitch‐type orbital forcing, representing precession and obliquity, respectively. The longer 100 cm cyclicity is also present in the biological (pollen, dinoflagellate cysts, and siliceous microfossils) and in the sedimentological (IRD) proxies. The environmental signal derived from the integrated multiproxy analysis suggests that in an enclosed Arctic Ocean at time of ice (sea ice and glacial ice) initiation the biological proxies responded more strongly to growing season length/darkness, whereas the terrigenous components, directly driven by sea ice and/or glacial ice formation and extent, responded more directly to seasonal insolation.
doi_str_mv 10.1029/2007PA001487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20707143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529952476</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4410-9fe816243b2dd3614cd5ef245b35f9c4a190bd06c3f5a26b984688af3ae44f123</originalsourceid><addsrcrecordid>eNp90U1vEzEQBmCrAolQuPEDfKo4sODvtblFUVqQIlJVfBwtrz1uDRs72FtK_j0bBSFOvcwc5nnn8iL0ipK3lDDzjhHSXy8JoUL3Z2hBjRCdoVo9QQuiNe80J_IZet7a96ORii9QWR38mHyaDjhlPN0B3qUQRsDr4iEDnsdU3YiX1U_J460Hl3GDkHbzAVfwpYb3eFuHNM0qlupTvsUuBwz5V6olH918qdD2JTd4gZ5GNzZ4-Xefoy-X68-rD91me_Vxtdx0TghKOhNBU8UEH1gIXFHhg4TIhBy4jMYLRw0ZAlGeR-mYGowWSmsXuQMhImX8HF2c_u5r-XkPbbK71DyMo8tQ7ptlpCc9FXyGrx-FVDJjJBO9mumbE_W1tFYh2n1NO1cPlhJ7LMD-X8DM2Yk_pBEOj1p7vdxsqRBkDnWnUGoT_P4XcvWHVT3vpf326cryGyn015vervgfBr6WPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529952476</pqid></control><display><type>article</type><title>Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sangiorgi, Francesca ; van Soelen, Els E. ; Spofforth, David J. A. ; Pälike, Heiko ; Stickley, Catherine E. ; St. John, Kristen ; Koç, Nalan ; Schouten, Stefan ; Sinninghe Damsté, Jaap S. ; Brinkhuis, Henk</creator><creatorcontrib>Sangiorgi, Francesca ; van Soelen, Els E. ; Spofforth, David J. A. ; Pälike, Heiko ; Stickley, Catherine E. ; St. John, Kristen ; Koç, Nalan ; Schouten, Stefan ; Sinninghe Damsté, Jaap S. ; Brinkhuis, Henk</creatorcontrib><description>Continuous X‐ray fluorescence scanning of middle Eocene (∼46 Ma) core M0002A‐55X (∼236–241 m composite depth), recovered during Integrated Ocean Drilling Program Expedition 302, revealed a strong cyclical signal in some major and trace geochemical elements. We performed a multiproxy study of the same core, which included organic geochemical, sedimentological, and biological parameters, and integrated our results with available geochemical and physical properties data. The target was to look for cyclicity in the several proxies, investigate their frequency, and understand the environmental response to the potential forcing. Results indicate that a higher terrigenous component corresponds to lower organic carbon concentration, smaller contributions by angiosperm pollen and spores, organic‐walled dinoflagellate cysts, and chrysophyte cysts (lower productivity, shorter growing season for flowering plants, and lower stratification) but higher contributions by bisaccate pollen and diatoms (drier conditions on land, more marine conditions) and higher terrigenous sand (ice‐rafted debris (IRD)). Our investigation shows that physical proxy parameters hold cyclicity with periods of about 50 and 100 cm and that these frequency components are compatible with a Milankovitch‐type orbital forcing, representing precession and obliquity, respectively. The longer 100 cm cyclicity is also present in the biological (pollen, dinoflagellate cysts, and siliceous microfossils) and in the sedimentological (IRD) proxies. The environmental signal derived from the integrated multiproxy analysis suggests that in an enclosed Arctic Ocean at time of ice (sea ice and glacial ice) initiation the biological proxies responded more strongly to growing season length/darkness, whereas the terrigenous components, directly driven by sea ice and/or glacial ice formation and extent, responded more directly to seasonal insolation.</description><identifier>ISSN: 0883-8305</identifier><identifier>EISSN: 1944-9186</identifier><identifier>DOI: 10.1029/2007PA001487</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Arctic Ocean ; Bacillariophyceae ; Eocene ; Marine ; orbital forcing</subject><ispartof>Paleoceanography, 2008-03, Vol.23 (1), p.np-n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4410-9fe816243b2dd3614cd5ef245b35f9c4a190bd06c3f5a26b984688af3ae44f123</citedby><cites>FETCH-LOGICAL-a4410-9fe816243b2dd3614cd5ef245b35f9c4a190bd06c3f5a26b984688af3ae44f123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007PA001487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007PA001487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Sangiorgi, Francesca</creatorcontrib><creatorcontrib>van Soelen, Els E.</creatorcontrib><creatorcontrib>Spofforth, David J. A.</creatorcontrib><creatorcontrib>Pälike, Heiko</creatorcontrib><creatorcontrib>Stickley, Catherine E.</creatorcontrib><creatorcontrib>St. John, Kristen</creatorcontrib><creatorcontrib>Koç, Nalan</creatorcontrib><creatorcontrib>Schouten, Stefan</creatorcontrib><creatorcontrib>Sinninghe Damsté, Jaap S.</creatorcontrib><creatorcontrib>Brinkhuis, Henk</creatorcontrib><title>Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response</title><title>Paleoceanography</title><addtitle>Paleoceanography</addtitle><description>Continuous X‐ray fluorescence scanning of middle Eocene (∼46 Ma) core M0002A‐55X (∼236–241 m composite depth), recovered during Integrated Ocean Drilling Program Expedition 302, revealed a strong cyclical signal in some major and trace geochemical elements. We performed a multiproxy study of the same core, which included organic geochemical, sedimentological, and biological parameters, and integrated our results with available geochemical and physical properties data. The target was to look for cyclicity in the several proxies, investigate their frequency, and understand the environmental response to the potential forcing. Results indicate that a higher terrigenous component corresponds to lower organic carbon concentration, smaller contributions by angiosperm pollen and spores, organic‐walled dinoflagellate cysts, and chrysophyte cysts (lower productivity, shorter growing season for flowering plants, and lower stratification) but higher contributions by bisaccate pollen and diatoms (drier conditions on land, more marine conditions) and higher terrigenous sand (ice‐rafted debris (IRD)). Our investigation shows that physical proxy parameters hold cyclicity with periods of about 50 and 100 cm and that these frequency components are compatible with a Milankovitch‐type orbital forcing, representing precession and obliquity, respectively. The longer 100 cm cyclicity is also present in the biological (pollen, dinoflagellate cysts, and siliceous microfossils) and in the sedimentological (IRD) proxies. The environmental signal derived from the integrated multiproxy analysis suggests that in an enclosed Arctic Ocean at time of ice (sea ice and glacial ice) initiation the biological proxies responded more strongly to growing season length/darkness, whereas the terrigenous components, directly driven by sea ice and/or glacial ice formation and extent, responded more directly to seasonal insolation.</description><subject>Arctic Ocean</subject><subject>Bacillariophyceae</subject><subject>Eocene</subject><subject>Marine</subject><subject>orbital forcing</subject><issn>0883-8305</issn><issn>1944-9186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90U1vEzEQBmCrAolQuPEDfKo4sODvtblFUVqQIlJVfBwtrz1uDRs72FtK_j0bBSFOvcwc5nnn8iL0ipK3lDDzjhHSXy8JoUL3Z2hBjRCdoVo9QQuiNe80J_IZet7a96ORii9QWR38mHyaDjhlPN0B3qUQRsDr4iEDnsdU3YiX1U_J460Hl3GDkHbzAVfwpYb3eFuHNM0qlupTvsUuBwz5V6olH918qdD2JTd4gZ5GNzZ4-Xefoy-X68-rD91me_Vxtdx0TghKOhNBU8UEH1gIXFHhg4TIhBy4jMYLRw0ZAlGeR-mYGowWSmsXuQMhImX8HF2c_u5r-XkPbbK71DyMo8tQ7ptlpCc9FXyGrx-FVDJjJBO9mumbE_W1tFYh2n1NO1cPlhJ7LMD-X8DM2Yk_pBEOj1p7vdxsqRBkDnWnUGoT_P4XcvWHVT3vpf326cryGyn015vervgfBr6WPw</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Sangiorgi, Francesca</creator><creator>van Soelen, Els E.</creator><creator>Spofforth, David J. A.</creator><creator>Pälike, Heiko</creator><creator>Stickley, Catherine E.</creator><creator>St. John, Kristen</creator><creator>Koç, Nalan</creator><creator>Schouten, Stefan</creator><creator>Sinninghe Damsté, Jaap S.</creator><creator>Brinkhuis, Henk</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>H95</scope><scope>KL.</scope><scope>M7N</scope></search><sort><creationdate>200803</creationdate><title>Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response</title><author>Sangiorgi, Francesca ; van Soelen, Els E. ; Spofforth, David J. A. ; Pälike, Heiko ; Stickley, Catherine E. ; St. John, Kristen ; Koç, Nalan ; Schouten, Stefan ; Sinninghe Damsté, Jaap S. ; Brinkhuis, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4410-9fe816243b2dd3614cd5ef245b35f9c4a190bd06c3f5a26b984688af3ae44f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arctic Ocean</topic><topic>Bacillariophyceae</topic><topic>Eocene</topic><topic>Marine</topic><topic>orbital forcing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sangiorgi, Francesca</creatorcontrib><creatorcontrib>van Soelen, Els E.</creatorcontrib><creatorcontrib>Spofforth, David J. A.</creatorcontrib><creatorcontrib>Pälike, Heiko</creatorcontrib><creatorcontrib>Stickley, Catherine E.</creatorcontrib><creatorcontrib>St. John, Kristen</creatorcontrib><creatorcontrib>Koç, Nalan</creatorcontrib><creatorcontrib>Schouten, Stefan</creatorcontrib><creatorcontrib>Sinninghe Damsté, Jaap S.</creatorcontrib><creatorcontrib>Brinkhuis, Henk</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Paleoceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangiorgi, Francesca</au><au>van Soelen, Els E.</au><au>Spofforth, David J. A.</au><au>Pälike, Heiko</au><au>Stickley, Catherine E.</au><au>St. John, Kristen</au><au>Koç, Nalan</au><au>Schouten, Stefan</au><au>Sinninghe Damsté, Jaap S.</au><au>Brinkhuis, Henk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response</atitle><jtitle>Paleoceanography</jtitle><addtitle>Paleoceanography</addtitle><date>2008-03</date><risdate>2008</risdate><volume>23</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0883-8305</issn><eissn>1944-9186</eissn><abstract>Continuous X‐ray fluorescence scanning of middle Eocene (∼46 Ma) core M0002A‐55X (∼236–241 m composite depth), recovered during Integrated Ocean Drilling Program Expedition 302, revealed a strong cyclical signal in some major and trace geochemical elements. We performed a multiproxy study of the same core, which included organic geochemical, sedimentological, and biological parameters, and integrated our results with available geochemical and physical properties data. The target was to look for cyclicity in the several proxies, investigate their frequency, and understand the environmental response to the potential forcing. Results indicate that a higher terrigenous component corresponds to lower organic carbon concentration, smaller contributions by angiosperm pollen and spores, organic‐walled dinoflagellate cysts, and chrysophyte cysts (lower productivity, shorter growing season for flowering plants, and lower stratification) but higher contributions by bisaccate pollen and diatoms (drier conditions on land, more marine conditions) and higher terrigenous sand (ice‐rafted debris (IRD)). Our investigation shows that physical proxy parameters hold cyclicity with periods of about 50 and 100 cm and that these frequency components are compatible with a Milankovitch‐type orbital forcing, representing precession and obliquity, respectively. The longer 100 cm cyclicity is also present in the biological (pollen, dinoflagellate cysts, and siliceous microfossils) and in the sedimentological (IRD) proxies. The environmental signal derived from the integrated multiproxy analysis suggests that in an enclosed Arctic Ocean at time of ice (sea ice and glacial ice) initiation the biological proxies responded more strongly to growing season length/darkness, whereas the terrigenous components, directly driven by sea ice and/or glacial ice formation and extent, responded more directly to seasonal insolation.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007PA001487</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-8305
ispartof Paleoceanography, 2008-03, Vol.23 (1), p.np-n/a
issn 0883-8305
1944-9186
language eng
recordid cdi_proquest_miscellaneous_20707143
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete
subjects Arctic Ocean
Bacillariophyceae
Eocene
Marine
orbital forcing
title Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclicity%20in%20the%20middle%20Eocene%20central%20Arctic%20Ocean%20sediment%20record:%20Orbital%20forcing%20and%20environmental%20response&rft.jtitle=Paleoceanography&rft.au=Sangiorgi,%20Francesca&rft.date=2008-03&rft.volume=23&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0883-8305&rft.eissn=1944-9186&rft_id=info:doi/10.1029/2007PA001487&rft_dat=%3Cproquest_cross%3E1529952476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529952476&rft_id=info:pmid/&rfr_iscdi=true