Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing

Thermal noise of highly reflective mirror coatings is a major limit to the sensitivity of many precision laser experiments with strict requirements such as low optical absorption. Here, we investigate amorphous silicon and silicon nitride as an alternative to the currently used combination of coatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-06, Vol.120 (26), p.263602-263602, Article 263602
Hauptverfasser: Steinlechner, J, Martin, I W, Bell, A S, Hough, J, Fletcher, M, Murray, P G, Robie, R, Rowan, S, Schnabel, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263602
container_issue 26
container_start_page 263602
container_title Physical review letters
container_volume 120
creator Steinlechner, J
Martin, I W
Bell, A S
Hough, J
Fletcher, M
Murray, P G
Robie, R
Rowan, S
Schnabel, R
description Thermal noise of highly reflective mirror coatings is a major limit to the sensitivity of many precision laser experiments with strict requirements such as low optical absorption. Here, we investigate amorphous silicon and silicon nitride as an alternative to the currently used combination of coating materials, silica, and tantala. We demonstrate an improvement by a factor of ≈55 with respect to the lowest so far reported optical absorption of amorphous silicon at near-infrared wavelengths. This reduction was achieved via a combination of heat treatment, final operation at low temperature, and a wavelength of 2  μm instead of the more commonly used 1550 nm. Our silicon-based coating offers a factor of 12 thermal noise reduction compared to the performance possible with silica and tantala at 20 K. In gravitational-wave detectors, a noise reduction by a factor of 12 corresponds to an increase in the average detection rate by three orders of magnitude (≈12^{3}).
doi_str_mv 10.1103/PhysRevLett.120.263602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2070248257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070248257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-999b3beae7f5538180032f3113cfeaa9358267ed20349745ab919c4978a86b7f3</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMoOqdfYRR88aXz3qRtmkcd_oONDeeeQ9qlW0bXzKQV9u2NbIr4dM-Fcw6HHyEDhCEisLvZeu_f9OdYt-0QKQxpxjKgJ6SHwEXMEZNT0gNgGAsAfkEuvd8AANIsPycXLMiEU-yR-dzUprRN_KC8XkbTXWtKVUcT45x10ciq1jQrH1XhWdStU2uzWkczp0vjjW2iiW6dre1qH6lmGc1144P9ipxVqvb6-nj7ZPH0-D56icfT59fR_TgukwTaWAhRsEIrzas0ZTnmYS6tGCIrK62UYGlOM66XFFgieJKqQqAog8xVnhW8Yn1ye-jdOfvRad_KrfGlrmvVaNt5SYEDTXKa8mC9-Wfd2M41YZ2kAR_miGFDn2QHV-ms905XcufMVrm9RJDf2OUf7DLk5AF7CA6O9V2x1cvf2A9n9gX7oX-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120181155</pqid></control><display><type>article</type><title>Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Steinlechner, J ; Martin, I W ; Bell, A S ; Hough, J ; Fletcher, M ; Murray, P G ; Robie, R ; Rowan, S ; Schnabel, R</creator><creatorcontrib>Steinlechner, J ; Martin, I W ; Bell, A S ; Hough, J ; Fletcher, M ; Murray, P G ; Robie, R ; Rowan, S ; Schnabel, R</creatorcontrib><description>Thermal noise of highly reflective mirror coatings is a major limit to the sensitivity of many precision laser experiments with strict requirements such as low optical absorption. Here, we investigate amorphous silicon and silicon nitride as an alternative to the currently used combination of coating materials, silica, and tantala. We demonstrate an improvement by a factor of ≈55 with respect to the lowest so far reported optical absorption of amorphous silicon at near-infrared wavelengths. This reduction was achieved via a combination of heat treatment, final operation at low temperature, and a wavelength of 2  μm instead of the more commonly used 1550 nm. Our silicon-based coating offers a factor of 12 thermal noise reduction compared to the performance possible with silica and tantala at 20 K. In gravitational-wave detectors, a noise reduction by a factor of 12 corresponds to an increase in the average detection rate by three orders of magnitude (≈12^{3}).</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.120.263602</identifier><identifier>PMID: 30004721</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Absorption ; Amorphous silicon ; Coatings ; Gravitational waves ; Heat treatment ; Near infrared radiation ; Noise control ; Noise reduction ; Protective coatings ; Silicon dioxide ; Silicon nitride ; Thermal noise</subject><ispartof>Physical review letters, 2018-06, Vol.120 (26), p.263602-263602, Article 263602</ispartof><rights>Copyright American Physical Society Jun 29, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-999b3beae7f5538180032f3113cfeaa9358267ed20349745ab919c4978a86b7f3</citedby><cites>FETCH-LOGICAL-c440t-999b3beae7f5538180032f3113cfeaa9358267ed20349745ab919c4978a86b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30004721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinlechner, J</creatorcontrib><creatorcontrib>Martin, I W</creatorcontrib><creatorcontrib>Bell, A S</creatorcontrib><creatorcontrib>Hough, J</creatorcontrib><creatorcontrib>Fletcher, M</creatorcontrib><creatorcontrib>Murray, P G</creatorcontrib><creatorcontrib>Robie, R</creatorcontrib><creatorcontrib>Rowan, S</creatorcontrib><creatorcontrib>Schnabel, R</creatorcontrib><title>Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Thermal noise of highly reflective mirror coatings is a major limit to the sensitivity of many precision laser experiments with strict requirements such as low optical absorption. Here, we investigate amorphous silicon and silicon nitride as an alternative to the currently used combination of coating materials, silica, and tantala. We demonstrate an improvement by a factor of ≈55 with respect to the lowest so far reported optical absorption of amorphous silicon at near-infrared wavelengths. This reduction was achieved via a combination of heat treatment, final operation at low temperature, and a wavelength of 2  μm instead of the more commonly used 1550 nm. Our silicon-based coating offers a factor of 12 thermal noise reduction compared to the performance possible with silica and tantala at 20 K. In gravitational-wave detectors, a noise reduction by a factor of 12 corresponds to an increase in the average detection rate by three orders of magnitude (≈12^{3}).</description><subject>Absorption</subject><subject>Amorphous silicon</subject><subject>Coatings</subject><subject>Gravitational waves</subject><subject>Heat treatment</subject><subject>Near infrared radiation</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Protective coatings</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><subject>Thermal noise</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkF9LwzAUxYMoOqdfYRR88aXz3qRtmkcd_oONDeeeQ9qlW0bXzKQV9u2NbIr4dM-Fcw6HHyEDhCEisLvZeu_f9OdYt-0QKQxpxjKgJ6SHwEXMEZNT0gNgGAsAfkEuvd8AANIsPycXLMiEU-yR-dzUprRN_KC8XkbTXWtKVUcT45x10ciq1jQrH1XhWdStU2uzWkczp0vjjW2iiW6dre1qH6lmGc1144P9ipxVqvb6-nj7ZPH0-D56icfT59fR_TgukwTaWAhRsEIrzas0ZTnmYS6tGCIrK62UYGlOM66XFFgieJKqQqAog8xVnhW8Yn1ye-jdOfvRad_KrfGlrmvVaNt5SYEDTXKa8mC9-Wfd2M41YZ2kAR_miGFDn2QHV-ms905XcufMVrm9RJDf2OUf7DLk5AF7CA6O9V2x1cvf2A9n9gX7oX-d</recordid><startdate>20180629</startdate><enddate>20180629</enddate><creator>Steinlechner, J</creator><creator>Martin, I W</creator><creator>Bell, A S</creator><creator>Hough, J</creator><creator>Fletcher, M</creator><creator>Murray, P G</creator><creator>Robie, R</creator><creator>Rowan, S</creator><creator>Schnabel, R</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180629</creationdate><title>Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing</title><author>Steinlechner, J ; Martin, I W ; Bell, A S ; Hough, J ; Fletcher, M ; Murray, P G ; Robie, R ; Rowan, S ; Schnabel, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-999b3beae7f5538180032f3113cfeaa9358267ed20349745ab919c4978a86b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Amorphous silicon</topic><topic>Coatings</topic><topic>Gravitational waves</topic><topic>Heat treatment</topic><topic>Near infrared radiation</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Protective coatings</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinlechner, J</creatorcontrib><creatorcontrib>Martin, I W</creatorcontrib><creatorcontrib>Bell, A S</creatorcontrib><creatorcontrib>Hough, J</creatorcontrib><creatorcontrib>Fletcher, M</creatorcontrib><creatorcontrib>Murray, P G</creatorcontrib><creatorcontrib>Robie, R</creatorcontrib><creatorcontrib>Rowan, S</creatorcontrib><creatorcontrib>Schnabel, R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinlechner, J</au><au>Martin, I W</au><au>Bell, A S</au><au>Hough, J</au><au>Fletcher, M</au><au>Murray, P G</au><au>Robie, R</au><au>Rowan, S</au><au>Schnabel, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-06-29</date><risdate>2018</risdate><volume>120</volume><issue>26</issue><spage>263602</spage><epage>263602</epage><pages>263602-263602</pages><artnum>263602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Thermal noise of highly reflective mirror coatings is a major limit to the sensitivity of many precision laser experiments with strict requirements such as low optical absorption. Here, we investigate amorphous silicon and silicon nitride as an alternative to the currently used combination of coating materials, silica, and tantala. We demonstrate an improvement by a factor of ≈55 with respect to the lowest so far reported optical absorption of amorphous silicon at near-infrared wavelengths. This reduction was achieved via a combination of heat treatment, final operation at low temperature, and a wavelength of 2  μm instead of the more commonly used 1550 nm. Our silicon-based coating offers a factor of 12 thermal noise reduction compared to the performance possible with silica and tantala at 20 K. In gravitational-wave detectors, a noise reduction by a factor of 12 corresponds to an increase in the average detection rate by three orders of magnitude (≈12^{3}).</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30004721</pmid><doi>10.1103/PhysRevLett.120.263602</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-06, Vol.120 (26), p.263602-263602, Article 263602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2070248257
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Amorphous silicon
Coatings
Gravitational waves
Heat treatment
Near infrared radiation
Noise control
Noise reduction
Protective coatings
Silicon dioxide
Silicon nitride
Thermal noise
title Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon-Based%20Optical%20Mirror%20Coatings%20for%20Ultrahigh%20Precision%20Metrology%20and%20Sensing&rft.jtitle=Physical%20review%20letters&rft.au=Steinlechner,%20J&rft.date=2018-06-29&rft.volume=120&rft.issue=26&rft.spage=263602&rft.epage=263602&rft.pages=263602-263602&rft.artnum=263602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.120.263602&rft_dat=%3Cproquest_cross%3E2070248257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120181155&rft_id=info:pmid/30004721&rfr_iscdi=true