Metal-free three-dimensional perovskite ferroelectrics
Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low p...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-07, Vol.361 (6398), p.151-155 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 6398 |
container_start_page | 151 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 361 |
creator | Ye, Heng-Yun Tang, Yuan-Yuan Li, Peng-Fei Liao, Wei-Qiang Gao, Ji-Xing Hua, Xiu-Ni Cai, Hu Shi, Ping-Ping You, Yu-Meng Xiong, Ren-Gen |
description | Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (
-methyl-
-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications. |
doi_str_mv | 10.1126/science.aas9330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2070243661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070243661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-31466939a0afd94ba940a1b1d9442c245a7e0e1717716c317ff71d1d3db357e43</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEYmNw5oYmceHSLY7TZDmiiS9piAucqzR1RUc_RtIi8e_JtMKBi_1KfmzJD2OXwBcAQi2Dq6h1tLA2GER-xKbATZoYwfGYTTlHlay4TifsLIQt53Fm8JRNMEYhpJky9Uy9rZPSE83791iTomqoDVXX2nq-I999hY-qp3lJ3ndUk-t95cI5OyltHehi7DP2dn_3un5MNi8PT-vbTeIkij5BkEoZNJbbsjAyt0ZyCznELIUTMrWaOIEGrUE5BF2WGgoosMgx1SRxxm4Od3e--xwo9FlTBUd1bVvqhpAJrrmQqBRE9Pofuu0GH7_YU2plEFZpGqnlgXK-C8FTme181Vj_nQHP9kqzUWk2Ko0bV-PdIW-o-ON_HeIPNe5yuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068931855</pqid></control><display><type>article</type><title>Metal-free three-dimensional perovskite ferroelectrics</title><source>Jstor Complete Legacy</source><source>Science Magazine</source><creator>Ye, Heng-Yun ; Tang, Yuan-Yuan ; Li, Peng-Fei ; Liao, Wei-Qiang ; Gao, Ji-Xing ; Hua, Xiu-Ni ; Cai, Hu ; Shi, Ping-Ping ; You, Yu-Meng ; Xiong, Ren-Gen</creator><creatorcontrib>Ye, Heng-Yun ; Tang, Yuan-Yuan ; Li, Peng-Fei ; Liao, Wei-Qiang ; Gao, Ji-Xing ; Hua, Xiu-Ni ; Cai, Hu ; Shi, Ping-Ping ; You, Yu-Meng ; Xiong, Ren-Gen</creatorcontrib><description>Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (
-methyl-
-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aas9330</identifier><identifier>PMID: 30002249</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Ammonium ; Barium ; Barium titanates ; Biomedical materials ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Metals ; Organic Chemistry ; Organic compounds ; Perovskite structure ; Perovskites ; Phase transitions ; Polarization ; Synthesis ; Transition temperature ; Transition temperatures</subject><ispartof>Science (American Association for the Advancement of Science), 2018-07, Vol.361 (6398), p.151-155</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-31466939a0afd94ba940a1b1d9442c245a7e0e1717716c317ff71d1d3db357e43</citedby><cites>FETCH-LOGICAL-c432t-31466939a0afd94ba940a1b1d9442c245a7e0e1717716c317ff71d1d3db357e43</cites><orcidid>0000-0003-2276-6886 ; 0000-0002-5359-7037 ; 0000-0001-5228-6192 ; 0000-0002-8369-572X ; 0000-0002-4258-8733 ; 0000-0003-2364-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30002249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Heng-Yun</creatorcontrib><creatorcontrib>Tang, Yuan-Yuan</creatorcontrib><creatorcontrib>Li, Peng-Fei</creatorcontrib><creatorcontrib>Liao, Wei-Qiang</creatorcontrib><creatorcontrib>Gao, Ji-Xing</creatorcontrib><creatorcontrib>Hua, Xiu-Ni</creatorcontrib><creatorcontrib>Cai, Hu</creatorcontrib><creatorcontrib>Shi, Ping-Ping</creatorcontrib><creatorcontrib>You, Yu-Meng</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><title>Metal-free three-dimensional perovskite ferroelectrics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (
-methyl-
-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.</description><subject>Ammonium</subject><subject>Barium</subject><subject>Barium titanates</subject><subject>Biomedical materials</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Metals</subject><subject>Organic Chemistry</subject><subject>Organic compounds</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Synthesis</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwzAMhiMEYmNw5oYmceHSLY7TZDmiiS9piAucqzR1RUc_RtIi8e_JtMKBi_1KfmzJD2OXwBcAQi2Dq6h1tLA2GER-xKbATZoYwfGYTTlHlay4TifsLIQt53Fm8JRNMEYhpJky9Uy9rZPSE83791iTomqoDVXX2nq-I999hY-qp3lJ3ndUk-t95cI5OyltHehi7DP2dn_3un5MNi8PT-vbTeIkij5BkEoZNJbbsjAyt0ZyCznELIUTMrWaOIEGrUE5BF2WGgoosMgx1SRxxm4Od3e--xwo9FlTBUd1bVvqhpAJrrmQqBRE9Pofuu0GH7_YU2plEFZpGqnlgXK-C8FTme181Vj_nQHP9kqzUWk2Ko0bV-PdIW-o-ON_HeIPNe5yuA</recordid><startdate>20180713</startdate><enddate>20180713</enddate><creator>Ye, Heng-Yun</creator><creator>Tang, Yuan-Yuan</creator><creator>Li, Peng-Fei</creator><creator>Liao, Wei-Qiang</creator><creator>Gao, Ji-Xing</creator><creator>Hua, Xiu-Ni</creator><creator>Cai, Hu</creator><creator>Shi, Ping-Ping</creator><creator>You, Yu-Meng</creator><creator>Xiong, Ren-Gen</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2276-6886</orcidid><orcidid>https://orcid.org/0000-0002-5359-7037</orcidid><orcidid>https://orcid.org/0000-0001-5228-6192</orcidid><orcidid>https://orcid.org/0000-0002-8369-572X</orcidid><orcidid>https://orcid.org/0000-0002-4258-8733</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid></search><sort><creationdate>20180713</creationdate><title>Metal-free three-dimensional perovskite ferroelectrics</title><author>Ye, Heng-Yun ; Tang, Yuan-Yuan ; Li, Peng-Fei ; Liao, Wei-Qiang ; Gao, Ji-Xing ; Hua, Xiu-Ni ; Cai, Hu ; Shi, Ping-Ping ; You, Yu-Meng ; Xiong, Ren-Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-31466939a0afd94ba940a1b1d9442c245a7e0e1717716c317ff71d1d3db357e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonium</topic><topic>Barium</topic><topic>Barium titanates</topic><topic>Biomedical materials</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Metals</topic><topic>Organic Chemistry</topic><topic>Organic compounds</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Synthesis</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Heng-Yun</creatorcontrib><creatorcontrib>Tang, Yuan-Yuan</creatorcontrib><creatorcontrib>Li, Peng-Fei</creatorcontrib><creatorcontrib>Liao, Wei-Qiang</creatorcontrib><creatorcontrib>Gao, Ji-Xing</creatorcontrib><creatorcontrib>Hua, Xiu-Ni</creatorcontrib><creatorcontrib>Cai, Hu</creatorcontrib><creatorcontrib>Shi, Ping-Ping</creatorcontrib><creatorcontrib>You, Yu-Meng</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Heng-Yun</au><au>Tang, Yuan-Yuan</au><au>Li, Peng-Fei</au><au>Liao, Wei-Qiang</au><au>Gao, Ji-Xing</au><au>Hua, Xiu-Ni</au><au>Cai, Hu</au><au>Shi, Ping-Ping</au><au>You, Yu-Meng</au><au>Xiong, Ren-Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-free three-dimensional perovskite ferroelectrics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-07-13</date><risdate>2018</risdate><volume>361</volume><issue>6398</issue><spage>151</spage><epage>155</epage><pages>151-155</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (
-methyl-
-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30002249</pmid><doi>10.1126/science.aas9330</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2276-6886</orcidid><orcidid>https://orcid.org/0000-0002-5359-7037</orcidid><orcidid>https://orcid.org/0000-0001-5228-6192</orcidid><orcidid>https://orcid.org/0000-0002-8369-572X</orcidid><orcidid>https://orcid.org/0000-0002-4258-8733</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-07, Vol.361 (6398), p.151-155 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2070243661 |
source | Jstor Complete Legacy; Science Magazine |
subjects | Ammonium Barium Barium titanates Biomedical materials Ferroelectric materials Ferroelectricity Ferroelectrics Metals Organic Chemistry Organic compounds Perovskite structure Perovskites Phase transitions Polarization Synthesis Transition temperature Transition temperatures |
title | Metal-free three-dimensional perovskite ferroelectrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-free%20three-dimensional%20perovskite%20ferroelectrics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ye,%20Heng-Yun&rft.date=2018-07-13&rft.volume=361&rft.issue=6398&rft.spage=151&rft.epage=155&rft.pages=151-155&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aas9330&rft_dat=%3Cproquest_cross%3E2070243661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068931855&rft_id=info:pmid/30002249&rfr_iscdi=true |