Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms

This study investigated the enzyme–substrate interaction between Saccharomyces cerevisiae arginine methyltransferase Hmt1p and nucleolar protein Npl3p, using chemical cross linking/mass spectrometry (XL/MS). We show that XL/MS can capture transient interprotein interactions that occur during the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-08, Vol.90 (15), p.9101-9108
Hauptverfasser: Smith, Daniela-Lee, Götze, Michael, Bartolec, Tara K, Hart-Smith, Gene, Wilkins, Marc R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the enzyme–substrate interaction between Saccharomyces cerevisiae arginine methyltransferase Hmt1p and nucleolar protein Npl3p, using chemical cross linking/mass spectrometry (XL/MS). We show that XL/MS can capture transient interprotein interactions that occur during the process of methylation, involving a disordered region in Npl3p with tandem SRGG repeats, and we confirm that Hmt1p and Npl3p exist as homomultimers. Additionally, the study investigated the interdependencies between variables of an XL/MS experiment that lead to the identification of identical or different cross-linked peptides. We report that there are substantial benefits, in terms of biologically relevant cross-links identified, that result from the use of two mass-spectrometry-cleavable cross-linkers [disuccinimido sulfoxide (DSSO) and disuccinimido dibutyric urea (DSBU)], two fragmentation approaches [collision-induced dissociation and electron-transfer dissociation (CID+ETD)] and stepped high-energy collision dissociation (HCD)], and two programs (MeroX and XlinkX). We also show that there are specific combinations of XL/MS methods that are more successful than others for the two proteins investigated here; these are explored in detail in the text. Data are available via ProteomeXchange with identifier PXD008348.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b01525