Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity

Exquisite control of the electrodeposition of metal films and coatings is critical to a number of high technology and manufacturing industries, delivering functionality as diverse as anti-corrosion and anti-wear coatings, electronic device interconnects and energy storage. The frequent involvement o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2018-10, Vol.210, p.429-449
Hauptverfasser: Hillman, A Robert, Barker, Robert, Dalgliesh, Robert M, Ferreira, Virginia C, Palin, Emma J R, Sapstead, Rachel M, Smith, Emma L, Steinke, Nina-Juliane, Ryder, Karl S, Ballantyne, Andrew D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue
container_start_page 429
container_title Faraday discussions
container_volume 210
creator Hillman, A Robert
Barker, Robert
Dalgliesh, Robert M
Ferreira, Virginia C
Palin, Emma J R
Sapstead, Rachel M
Smith, Emma L
Steinke, Nina-Juliane
Ryder, Karl S
Ballantyne, Andrew D
description Exquisite control of the electrodeposition of metal films and coatings is critical to a number of high technology and manufacturing industries, delivering functionality as diverse as anti-corrosion and anti-wear coatings, electronic device interconnects and energy storage. The frequent involvement of more than one metal motivates the capability to control, maintain and monitor spatial disposition of the component metals, whether as multilayers, alloys or composites. Here we investigate the deposition, evolution and dissolution of single and two-component metal layers involving Ag, Cu, and Sn on Au substrates immersed in the deep eutectic solvent (DES) Ethaline. During galvanostatically controlled stripping of the metals from two-component systems the potential signature in simultaneous thickness electrochemical potential (STEP) measurements provides identification of the dissolving metal; coulometric assay of deposition efficiency is an additional outcome. When combined with quartz crystal microbalance (QCM) frequency responses, the mass change : charge ratio provides oxidation state data; this is significant for Cu in the high chloride environment provided by Ethaline. The spatial distribution (solvent penetration and external roughness) of multiple components in bilayer systems is provided by specular neutron reflectivity (NR). Significantly, the use of the recently established event mode capability shortens the observational timescale of the NR measurements by an order of magnitude, permitting dynamic in situ observations on practically useful timescales. Ag,Cu bilayers of both spatial configurations give identical STEP signatures indicating that, despite the extremely low layer porosity, thermodynamic constraints (rather than spatial accessibility) dictate reactivity; thus, surprisingly, Cu dissolves first in both instances. Sn penetrates the Au electrode on the timescale of deposition; this can be prevented by interposing a layer of either Ag or Cu.
doi_str_mv 10.1039/c8fd00084k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2070234686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070234686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f06554028174fded33cb940adc919a857f3cfaceb6ff1e99641928e2d3e413183</originalsourceid><addsrcrecordid>eNpdkUtLJTEQhYM4-JyNP0ACbkTomaSTTidLuXpVRhgQZ930TSoS7STXTke4i_nvpn0tXNWB81VRVQehI0p-UcLUby2tIYRI_rSF9igTvGq4ktuzblQlBCe7aD-lx8KI4u6gXVYkb3i9h_7fQT9Uk_OAXcDJTRmbTei90zjlVZXyaHtdPN8_uPCAo8U-D5OrdPTrGCBMGAbQ0xgNrGNpB4OtG3zCOc08vMyILy4OkAsW8Ah27nAvbtocoh-2HxL8_KgH6N_y8n5xXd3-vbpZnN9WmjV0qiwRTcNJLWnLrQHDmF4pTnqjFVW9bFrL9LzmSlhLQSnBqaol1IYBp4xKdoBO3-eux_icIU2dd0nDMPQBYk5dTVpSMy6kKOjJN_Qx5jGU7bqa0rZmsmWqUGfvlB5jSuWkbj2WH42bjpJuDqVbyOXFWyh_Cnz8MTKvPJgv9DMF9gqOK4kV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117238739</pqid></control><display><type>article</type><title>Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hillman, A Robert ; Barker, Robert ; Dalgliesh, Robert M ; Ferreira, Virginia C ; Palin, Emma J R ; Sapstead, Rachel M ; Smith, Emma L ; Steinke, Nina-Juliane ; Ryder, Karl S ; Ballantyne, Andrew D</creator><creatorcontrib>Hillman, A Robert ; Barker, Robert ; Dalgliesh, Robert M ; Ferreira, Virginia C ; Palin, Emma J R ; Sapstead, Rachel M ; Smith, Emma L ; Steinke, Nina-Juliane ; Ryder, Karl S ; Ballantyne, Andrew D</creatorcontrib><description>Exquisite control of the electrodeposition of metal films and coatings is critical to a number of high technology and manufacturing industries, delivering functionality as diverse as anti-corrosion and anti-wear coatings, electronic device interconnects and energy storage. The frequent involvement of more than one metal motivates the capability to control, maintain and monitor spatial disposition of the component metals, whether as multilayers, alloys or composites. Here we investigate the deposition, evolution and dissolution of single and two-component metal layers involving Ag, Cu, and Sn on Au substrates immersed in the deep eutectic solvent (DES) Ethaline. During galvanostatically controlled stripping of the metals from two-component systems the potential signature in simultaneous thickness electrochemical potential (STEP) measurements provides identification of the dissolving metal; coulometric assay of deposition efficiency is an additional outcome. When combined with quartz crystal microbalance (QCM) frequency responses, the mass change : charge ratio provides oxidation state data; this is significant for Cu in the high chloride environment provided by Ethaline. The spatial distribution (solvent penetration and external roughness) of multiple components in bilayer systems is provided by specular neutron reflectivity (NR). Significantly, the use of the recently established event mode capability shortens the observational timescale of the NR measurements by an order of magnitude, permitting dynamic in situ observations on practically useful timescales. Ag,Cu bilayers of both spatial configurations give identical STEP signatures indicating that, despite the extremely low layer porosity, thermodynamic constraints (rather than spatial accessibility) dictate reactivity; thus, surprisingly, Cu dissolves first in both instances. Sn penetrates the Au electrode on the timescale of deposition; this can be prevented by interposing a layer of either Ag or Cu.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/c8fd00084k</identifier><identifier>PMID: 30004542</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Coated electrodes ; Copper ; Corrosion prevention ; Corrosive wear ; Coulometers ; Dissolution ; Electrochemical potential ; Energy storage ; Gold ; Metal films ; Microbalances ; Multilayers ; Oxidation ; Porosity ; Protective coatings ; Quartz crystals ; Reflectance ; Silver ; Solvents ; Spatial distribution ; Substrates ; Time ; Valence</subject><ispartof>Faraday discussions, 2018-10, Vol.210, p.429-449</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f06554028174fded33cb940adc919a857f3cfaceb6ff1e99641928e2d3e413183</citedby><cites>FETCH-LOGICAL-c351t-f06554028174fded33cb940adc919a857f3cfaceb6ff1e99641928e2d3e413183</cites><orcidid>0000-0003-1868-5717 ; 0000-0002-4648-3461 ; 0000-0001-5844-0883 ; 0000-0002-8645-5385 ; 0000-0003-2803-6884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30004542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillman, A Robert</creatorcontrib><creatorcontrib>Barker, Robert</creatorcontrib><creatorcontrib>Dalgliesh, Robert M</creatorcontrib><creatorcontrib>Ferreira, Virginia C</creatorcontrib><creatorcontrib>Palin, Emma J R</creatorcontrib><creatorcontrib>Sapstead, Rachel M</creatorcontrib><creatorcontrib>Smith, Emma L</creatorcontrib><creatorcontrib>Steinke, Nina-Juliane</creatorcontrib><creatorcontrib>Ryder, Karl S</creatorcontrib><creatorcontrib>Ballantyne, Andrew D</creatorcontrib><title>Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>Exquisite control of the electrodeposition of metal films and coatings is critical to a number of high technology and manufacturing industries, delivering functionality as diverse as anti-corrosion and anti-wear coatings, electronic device interconnects and energy storage. The frequent involvement of more than one metal motivates the capability to control, maintain and monitor spatial disposition of the component metals, whether as multilayers, alloys or composites. Here we investigate the deposition, evolution and dissolution of single and two-component metal layers involving Ag, Cu, and Sn on Au substrates immersed in the deep eutectic solvent (DES) Ethaline. During galvanostatically controlled stripping of the metals from two-component systems the potential signature in simultaneous thickness electrochemical potential (STEP) measurements provides identification of the dissolving metal; coulometric assay of deposition efficiency is an additional outcome. When combined with quartz crystal microbalance (QCM) frequency responses, the mass change : charge ratio provides oxidation state data; this is significant for Cu in the high chloride environment provided by Ethaline. The spatial distribution (solvent penetration and external roughness) of multiple components in bilayer systems is provided by specular neutron reflectivity (NR). Significantly, the use of the recently established event mode capability shortens the observational timescale of the NR measurements by an order of magnitude, permitting dynamic in situ observations on practically useful timescales. Ag,Cu bilayers of both spatial configurations give identical STEP signatures indicating that, despite the extremely low layer porosity, thermodynamic constraints (rather than spatial accessibility) dictate reactivity; thus, surprisingly, Cu dissolves first in both instances. Sn penetrates the Au electrode on the timescale of deposition; this can be prevented by interposing a layer of either Ag or Cu.</description><subject>Coated electrodes</subject><subject>Copper</subject><subject>Corrosion prevention</subject><subject>Corrosive wear</subject><subject>Coulometers</subject><subject>Dissolution</subject><subject>Electrochemical potential</subject><subject>Energy storage</subject><subject>Gold</subject><subject>Metal films</subject><subject>Microbalances</subject><subject>Multilayers</subject><subject>Oxidation</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Quartz crystals</subject><subject>Reflectance</subject><subject>Silver</subject><subject>Solvents</subject><subject>Spatial distribution</subject><subject>Substrates</subject><subject>Time</subject><subject>Valence</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLJTEQhYM4-JyNP0ACbkTomaSTTidLuXpVRhgQZ930TSoS7STXTke4i_nvpn0tXNWB81VRVQehI0p-UcLUby2tIYRI_rSF9igTvGq4ktuzblQlBCe7aD-lx8KI4u6gXVYkb3i9h_7fQT9Uk_OAXcDJTRmbTei90zjlVZXyaHtdPN8_uPCAo8U-D5OrdPTrGCBMGAbQ0xgNrGNpB4OtG3zCOc08vMyILy4OkAsW8Ah27nAvbtocoh-2HxL8_KgH6N_y8n5xXd3-vbpZnN9WmjV0qiwRTcNJLWnLrQHDmF4pTnqjFVW9bFrL9LzmSlhLQSnBqaol1IYBp4xKdoBO3-eux_icIU2dd0nDMPQBYk5dTVpSMy6kKOjJN_Qx5jGU7bqa0rZmsmWqUGfvlB5jSuWkbj2WH42bjpJuDqVbyOXFWyh_Cnz8MTKvPJgv9DMF9gqOK4kV</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Hillman, A Robert</creator><creator>Barker, Robert</creator><creator>Dalgliesh, Robert M</creator><creator>Ferreira, Virginia C</creator><creator>Palin, Emma J R</creator><creator>Sapstead, Rachel M</creator><creator>Smith, Emma L</creator><creator>Steinke, Nina-Juliane</creator><creator>Ryder, Karl S</creator><creator>Ballantyne, Andrew D</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1868-5717</orcidid><orcidid>https://orcid.org/0000-0002-4648-3461</orcidid><orcidid>https://orcid.org/0000-0001-5844-0883</orcidid><orcidid>https://orcid.org/0000-0002-8645-5385</orcidid><orcidid>https://orcid.org/0000-0003-2803-6884</orcidid></search><sort><creationdate>20181001</creationdate><title>Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity</title><author>Hillman, A Robert ; Barker, Robert ; Dalgliesh, Robert M ; Ferreira, Virginia C ; Palin, Emma J R ; Sapstead, Rachel M ; Smith, Emma L ; Steinke, Nina-Juliane ; Ryder, Karl S ; Ballantyne, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f06554028174fded33cb940adc919a857f3cfaceb6ff1e99641928e2d3e413183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coated electrodes</topic><topic>Copper</topic><topic>Corrosion prevention</topic><topic>Corrosive wear</topic><topic>Coulometers</topic><topic>Dissolution</topic><topic>Electrochemical potential</topic><topic>Energy storage</topic><topic>Gold</topic><topic>Metal films</topic><topic>Microbalances</topic><topic>Multilayers</topic><topic>Oxidation</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Quartz crystals</topic><topic>Reflectance</topic><topic>Silver</topic><topic>Solvents</topic><topic>Spatial distribution</topic><topic>Substrates</topic><topic>Time</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillman, A Robert</creatorcontrib><creatorcontrib>Barker, Robert</creatorcontrib><creatorcontrib>Dalgliesh, Robert M</creatorcontrib><creatorcontrib>Ferreira, Virginia C</creatorcontrib><creatorcontrib>Palin, Emma J R</creatorcontrib><creatorcontrib>Sapstead, Rachel M</creatorcontrib><creatorcontrib>Smith, Emma L</creatorcontrib><creatorcontrib>Steinke, Nina-Juliane</creatorcontrib><creatorcontrib>Ryder, Karl S</creatorcontrib><creatorcontrib>Ballantyne, Andrew D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillman, A Robert</au><au>Barker, Robert</au><au>Dalgliesh, Robert M</au><au>Ferreira, Virginia C</au><au>Palin, Emma J R</au><au>Sapstead, Rachel M</au><au>Smith, Emma L</au><au>Steinke, Nina-Juliane</au><au>Ryder, Karl S</au><au>Ballantyne, Andrew D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>210</volume><spage>429</spage><epage>449</epage><pages>429-449</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>Exquisite control of the electrodeposition of metal films and coatings is critical to a number of high technology and manufacturing industries, delivering functionality as diverse as anti-corrosion and anti-wear coatings, electronic device interconnects and energy storage. The frequent involvement of more than one metal motivates the capability to control, maintain and monitor spatial disposition of the component metals, whether as multilayers, alloys or composites. Here we investigate the deposition, evolution and dissolution of single and two-component metal layers involving Ag, Cu, and Sn on Au substrates immersed in the deep eutectic solvent (DES) Ethaline. During galvanostatically controlled stripping of the metals from two-component systems the potential signature in simultaneous thickness electrochemical potential (STEP) measurements provides identification of the dissolving metal; coulometric assay of deposition efficiency is an additional outcome. When combined with quartz crystal microbalance (QCM) frequency responses, the mass change : charge ratio provides oxidation state data; this is significant for Cu in the high chloride environment provided by Ethaline. The spatial distribution (solvent penetration and external roughness) of multiple components in bilayer systems is provided by specular neutron reflectivity (NR). Significantly, the use of the recently established event mode capability shortens the observational timescale of the NR measurements by an order of magnitude, permitting dynamic in situ observations on practically useful timescales. Ag,Cu bilayers of both spatial configurations give identical STEP signatures indicating that, despite the extremely low layer porosity, thermodynamic constraints (rather than spatial accessibility) dictate reactivity; thus, surprisingly, Cu dissolves first in both instances. Sn penetrates the Au electrode on the timescale of deposition; this can be prevented by interposing a layer of either Ag or Cu.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30004542</pmid><doi>10.1039/c8fd00084k</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1868-5717</orcidid><orcidid>https://orcid.org/0000-0002-4648-3461</orcidid><orcidid>https://orcid.org/0000-0001-5844-0883</orcidid><orcidid>https://orcid.org/0000-0002-8645-5385</orcidid><orcidid>https://orcid.org/0000-0003-2803-6884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2018-10, Vol.210, p.429-449
issn 1359-6640
1364-5498
language eng
recordid cdi_proquest_miscellaneous_2070234686
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Coated electrodes
Copper
Corrosion prevention
Corrosive wear
Coulometers
Dissolution
Electrochemical potential
Energy storage
Gold
Metal films
Microbalances
Multilayers
Oxidation
Porosity
Protective coatings
Quartz crystals
Reflectance
Silver
Solvents
Spatial distribution
Substrates
Time
Valence
title Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20in%20situ%20dynamic%20sub-surface%20imaging%20of%20multi-component%20electrodeposited%20films%20using%20event%20mode%20neutron%20reflectivity&rft.jtitle=Faraday%20discussions&rft.au=Hillman,%20A%20Robert&rft.date=2018-10-01&rft.volume=210&rft.spage=429&rft.epage=449&rft.pages=429-449&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/c8fd00084k&rft_dat=%3Cproquest_cross%3E2070234686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117238739&rft_id=info:pmid/30004542&rfr_iscdi=true