Three-dimensional shoaling of large-amplitude internal waves

The three‐dimensional (3‐D) shoaling of large‐amplitude internal waves (LAIW) is studied in the framework of a fully nonlinear nonhydrostatic numerical model. The vertical fluid stratification, parameters of the propagating waves and bottom topography were taken close to those observed in the northe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2007-11, Vol.112 (C11), p.n/a
Hauptverfasser: Vlasenko, V., Stashchuk, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C11
container_start_page
container_title Journal of Geophysical Research. C. Oceans
container_volume 112
creator Vlasenko, V.
Stashchuk, N.
description The three‐dimensional (3‐D) shoaling of large‐amplitude internal waves (LAIW) is studied in the framework of a fully nonlinear nonhydrostatic numerical model. The vertical fluid stratification, parameters of the propagating waves and bottom topography were taken close to those observed in the northern part of the Andaman Sea. It was found that three‐dimensional evolution of LAIWs propagating from the deep part of a basin onto the shelf differs from two‐dimensional shoaling in many ways largely because of the process of wave refraction developing in the areas of local bottom elevations or depressions. In the 3‐D case the wave refraction produces concave and convex fragments of the wave fronts which may lead to the transverse redistribution of energy along the wave. Results demonstrate that concave wave fragments work as optical lenses focusing the wave energy to the centers of curvature. This process is especially important for LAIWs in shallow water zones where wave amplitudes are close to the saturation level. In general, the wave refraction leads to more fast wave breaking than that in the 2‐D case. As a results, it should be expected to find localized regions of higher levels of water mixing and turbulence in the vicinity of local banks and headlands where LAIWs produce concave patterns. The areas of local bottom depressions, on the contrary, should be considered as potential places with lower level of background mixing.
doi_str_mv 10.1029/2007JC004107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20701618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20701618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5813-b60ab11568910a0ab789bebadaf138892aa0f3e9956aa6096ccfbfa7b60037fc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWNSbP6AXxYOrM8lusgEvUrRaRFEUwUuY3SYaTXdr0vrx791SUU_OZebwPC_Dy9g2wgEC14ccQI0GADmCWmE9joXMOAe-ynqAeZkB52qdbaX0DN3khcwBe-zo9ilam439xDbJtw2FfnpqKfjmsd-6fqD4aDOaTIOfzce275uZjQvond5s2mRrjkKyW997g92dntwOzrKLq-H54Pgio6JEkVUSqMLun1IjUHerUle2ojE5FGWpORE4YbUuJJEELevaVY5U54FQrhYbbHeZO43t69ymmZn4VNsQqLHtPBkOClBi2YF7_4KoUWvJQSzQ_SVaxzalaJ2ZRj-h-GkQzKJQ87fQDt_5TqZUU3CRmtqnX0frnKu86Dix5N59sJ__ZprR8GaAIIXorGxp-TSzHz8WxRcjlVCFub8cGn52jQ9KCzMSX2PFkag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919962038</pqid></control><display><type>article</type><title>Three-dimensional shoaling of large-amplitude internal waves</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Vlasenko, V. ; Stashchuk, N.</creator><creatorcontrib>Vlasenko, V. ; Stashchuk, N.</creatorcontrib><description>The three‐dimensional (3‐D) shoaling of large‐amplitude internal waves (LAIW) is studied in the framework of a fully nonlinear nonhydrostatic numerical model. The vertical fluid stratification, parameters of the propagating waves and bottom topography were taken close to those observed in the northern part of the Andaman Sea. It was found that three‐dimensional evolution of LAIWs propagating from the deep part of a basin onto the shelf differs from two‐dimensional shoaling in many ways largely because of the process of wave refraction developing in the areas of local bottom elevations or depressions. In the 3‐D case the wave refraction produces concave and convex fragments of the wave fronts which may lead to the transverse redistribution of energy along the wave. Results demonstrate that concave wave fragments work as optical lenses focusing the wave energy to the centers of curvature. This process is especially important for LAIWs in shallow water zones where wave amplitudes are close to the saturation level. In general, the wave refraction leads to more fast wave breaking than that in the 2‐D case. As a results, it should be expected to find localized regions of higher levels of water mixing and turbulence in the vicinity of local banks and headlands where LAIWs produce concave patterns. The areas of local bottom depressions, on the contrary, should be considered as potential places with lower level of background mixing.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2007JC004107</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; internal waves ; Marine ; numerical modeling</subject><ispartof>Journal of Geophysical Research. C. Oceans, 2007-11, Vol.112 (C11), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5813-b60ab11568910a0ab789bebadaf138892aa0f3e9956aa6096ccfbfa7b60037fc3</citedby><cites>FETCH-LOGICAL-a5813-b60ab11568910a0ab789bebadaf138892aa0f3e9956aa6096ccfbfa7b60037fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JC004107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JC004107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19942745$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vlasenko, V.</creatorcontrib><creatorcontrib>Stashchuk, N.</creatorcontrib><title>Three-dimensional shoaling of large-amplitude internal waves</title><title>Journal of Geophysical Research. C. Oceans</title><addtitle>J. Geophys. Res</addtitle><description>The three‐dimensional (3‐D) shoaling of large‐amplitude internal waves (LAIW) is studied in the framework of a fully nonlinear nonhydrostatic numerical model. The vertical fluid stratification, parameters of the propagating waves and bottom topography were taken close to those observed in the northern part of the Andaman Sea. It was found that three‐dimensional evolution of LAIWs propagating from the deep part of a basin onto the shelf differs from two‐dimensional shoaling in many ways largely because of the process of wave refraction developing in the areas of local bottom elevations or depressions. In the 3‐D case the wave refraction produces concave and convex fragments of the wave fronts which may lead to the transverse redistribution of energy along the wave. Results demonstrate that concave wave fragments work as optical lenses focusing the wave energy to the centers of curvature. This process is especially important for LAIWs in shallow water zones where wave amplitudes are close to the saturation level. In general, the wave refraction leads to more fast wave breaking than that in the 2‐D case. As a results, it should be expected to find localized regions of higher levels of water mixing and turbulence in the vicinity of local banks and headlands where LAIWs produce concave patterns. The areas of local bottom depressions, on the contrary, should be considered as potential places with lower level of background mixing.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>internal waves</subject><subject>Marine</subject><subject>numerical modeling</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWNSbP6AXxYOrM8lusgEvUrRaRFEUwUuY3SYaTXdr0vrx791SUU_OZebwPC_Dy9g2wgEC14ccQI0GADmCWmE9joXMOAe-ynqAeZkB52qdbaX0DN3khcwBe-zo9ilam439xDbJtw2FfnpqKfjmsd-6fqD4aDOaTIOfzce275uZjQvond5s2mRrjkKyW997g92dntwOzrKLq-H54Pgio6JEkVUSqMLun1IjUHerUle2ojE5FGWpORE4YbUuJJEELevaVY5U54FQrhYbbHeZO43t69ymmZn4VNsQqLHtPBkOClBi2YF7_4KoUWvJQSzQ_SVaxzalaJ2ZRj-h-GkQzKJQ87fQDt_5TqZUU3CRmtqnX0frnKu86Dix5N59sJ__ZprR8GaAIIXorGxp-TSzHz8WxRcjlVCFub8cGn52jQ9KCzMSX2PFkag</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Vlasenko, V.</creator><creator>Stashchuk, N.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200711</creationdate><title>Three-dimensional shoaling of large-amplitude internal waves</title><author>Vlasenko, V. ; Stashchuk, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5813-b60ab11568910a0ab789bebadaf138892aa0f3e9956aa6096ccfbfa7b60037fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>internal waves</topic><topic>Marine</topic><topic>numerical modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlasenko, V.</creatorcontrib><creatorcontrib>Stashchuk, N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of Geophysical Research. C. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlasenko, V.</au><au>Stashchuk, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional shoaling of large-amplitude internal waves</atitle><jtitle>Journal of Geophysical Research. C. Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-11</date><risdate>2007</risdate><volume>112</volume><issue>C11</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The three‐dimensional (3‐D) shoaling of large‐amplitude internal waves (LAIW) is studied in the framework of a fully nonlinear nonhydrostatic numerical model. The vertical fluid stratification, parameters of the propagating waves and bottom topography were taken close to those observed in the northern part of the Andaman Sea. It was found that three‐dimensional evolution of LAIWs propagating from the deep part of a basin onto the shelf differs from two‐dimensional shoaling in many ways largely because of the process of wave refraction developing in the areas of local bottom elevations or depressions. In the 3‐D case the wave refraction produces concave and convex fragments of the wave fronts which may lead to the transverse redistribution of energy along the wave. Results demonstrate that concave wave fragments work as optical lenses focusing the wave energy to the centers of curvature. This process is especially important for LAIWs in shallow water zones where wave amplitudes are close to the saturation level. In general, the wave refraction leads to more fast wave breaking than that in the 2‐D case. As a results, it should be expected to find localized regions of higher levels of water mixing and turbulence in the vicinity of local banks and headlands where LAIWs produce concave patterns. The areas of local bottom depressions, on the contrary, should be considered as potential places with lower level of background mixing.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JC004107</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. C. Oceans, 2007-11, Vol.112 (C11), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_20701618
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
internal waves
Marine
numerical modeling
title Three-dimensional shoaling of large-amplitude internal waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20shoaling%20of%20large-amplitude%20internal%20waves&rft.jtitle=Journal%20of%20Geophysical%20Research.%20C.%20Oceans&rft.au=Vlasenko,%20V.&rft.date=2007-11&rft.volume=112&rft.issue=C11&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JC004107&rft_dat=%3Cproquest_cross%3E20701618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919962038&rft_id=info:pmid/&rfr_iscdi=true