Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method

To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2008-05, Vol.352 (3-4), p.309-321
Hauptverfasser: Wang, Chunmei, Zuo, Qiang, Zhang, Renduo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 3-4
container_start_page 309
container_title Journal of hydrology (Amsterdam)
container_volume 352
creator Wang, Chunmei
Zuo, Qiang
Zhang, Renduo
description To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.
doi_str_mv 10.1016/j.jhydrol.2008.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20695099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169408000413</els_id><sourcerecordid>20695099</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpodskPyFUl_bm7Uj-0OpUSkg_INBDmrOQ5VFWi21tNXJh8-srs0uvlQYE4nnfmXkZuxWwFSC6T4ftYX8aUhy3EmC3BVFKvGIbsVO6kgrUa7YBkLISnW7esndEByinrpsNW-4ph8nmMD_zvEc-o0Mim06c7HQc128KL8ij57Qkbx1yimHkUwyUl4TcZj4E7zHhnDk5OyLxhVad5cnOQ5y4i1Mf5tIjznzCvI_DNXvj7Uh4c3mv2NPX-19336uHn99-3H15qGwjVK4aoZ0GGFDqftB9Y9tO1XXdYd-3O9C6l1pj66VC8EKh8kq3rtEtiF55bJr6in08-x5T_L0gZTMFcjiOdsa4kJHQFVrrArZn0KVIlNCbYyqxpJMRYNaQzcFcQjZryAZEKVF0Hy4N7Lq7Lxu7QP_EEmRX13Id5P2Z8zYa-5wK8_QoQdTFS5W7On0-E1jy-BMwGXIBZ4dDSOiyGWL4zyx_Ab3QoG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20695099</pqid></control><display><type>article</type><title>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Chunmei ; Zuo, Qiang ; Zhang, Renduo</creator><creatorcontrib>Wang, Chunmei ; Zuo, Qiang ; Zhang, Renduo</creatorcontrib><description>To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2008.01.011</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>bootstrap sampling procedure ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; mathematics and statistics ; Necessary sampling size ; Random combination method ; sampling ; Sampling strategy ; Soil moisture ; soil water ; soil water content ; topsoil</subject><ispartof>Journal of hydrology (Amsterdam), 2008-05, Vol.352 (3-4), p.309-321</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</citedby><cites>FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169408000413$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20263324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Zhang, Renduo</creatorcontrib><title>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</title><title>Journal of hydrology (Amsterdam)</title><description>To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.</description><subject>bootstrap sampling procedure</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematics and statistics</subject><subject>Necessary sampling size</subject><subject>Random combination method</subject><subject>sampling</subject><subject>Sampling strategy</subject><subject>Soil moisture</subject><subject>soil water</subject><subject>soil water content</subject><subject>topsoil</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpodskPyFUl_bm7Uj-0OpUSkg_INBDmrOQ5VFWi21tNXJh8-srs0uvlQYE4nnfmXkZuxWwFSC6T4ftYX8aUhy3EmC3BVFKvGIbsVO6kgrUa7YBkLISnW7esndEByinrpsNW-4ph8nmMD_zvEc-o0Mim06c7HQc128KL8ij57Qkbx1yimHkUwyUl4TcZj4E7zHhnDk5OyLxhVad5cnOQ5y4i1Mf5tIjznzCvI_DNXvj7Uh4c3mv2NPX-19336uHn99-3H15qGwjVK4aoZ0GGFDqftB9Y9tO1XXdYd-3O9C6l1pj66VC8EKh8kq3rtEtiF55bJr6in08-x5T_L0gZTMFcjiOdsa4kJHQFVrrArZn0KVIlNCbYyqxpJMRYNaQzcFcQjZryAZEKVF0Hy4N7Lq7Lxu7QP_EEmRX13Id5P2Z8zYa-5wK8_QoQdTFS5W7On0-E1jy-BMwGXIBZ4dDSOiyGWL4zyx_Ab3QoG0</recordid><startdate>20080515</startdate><enddate>20080515</enddate><creator>Wang, Chunmei</creator><creator>Zuo, Qiang</creator><creator>Zhang, Renduo</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20080515</creationdate><title>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</title><author>Wang, Chunmei ; Zuo, Qiang ; Zhang, Renduo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>bootstrap sampling procedure</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematics and statistics</topic><topic>Necessary sampling size</topic><topic>Random combination method</topic><topic>sampling</topic><topic>Sampling strategy</topic><topic>Soil moisture</topic><topic>soil water</topic><topic>soil water content</topic><topic>topsoil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Zhang, Renduo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunmei</au><au>Zuo, Qiang</au><au>Zhang, Renduo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2008-05-15</date><risdate>2008</risdate><volume>352</volume><issue>3-4</issue><spage>309</spage><epage>321</epage><pages>309-321</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2008.01.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2008-05, Vol.352 (3-4), p.309-321
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_20695099
source Elsevier ScienceDirect Journals
subjects bootstrap sampling procedure
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydrology
Hydrology. Hydrogeology
mathematics and statistics
Necessary sampling size
Random combination method
sampling
Sampling strategy
Soil moisture
soil water
soil water content
topsoil
title Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20necessary%20sampling%20size%20of%20surface%20soil%20moisture%20at%20different%20scales%20using%20a%20random%20combination%20method&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Wang,%20Chunmei&rft.date=2008-05-15&rft.volume=352&rft.issue=3-4&rft.spage=309&rft.epage=321&rft.pages=309-321&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2008.01.011&rft_dat=%3Cproquest_cross%3E20695099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20695099&rft_id=info:pmid/&rft_els_id=S0022169408000413&rfr_iscdi=true