Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method
To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possib...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2008-05, Vol.352 (3-4), p.309-321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 3-4 |
container_start_page | 309 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 352 |
creator | Wang, Chunmei Zuo, Qiang Zhang, Renduo |
description | To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation. |
doi_str_mv | 10.1016/j.jhydrol.2008.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20695099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169408000413</els_id><sourcerecordid>20695099</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpodskPyFUl_bm7Uj-0OpUSkg_INBDmrOQ5VFWi21tNXJh8-srs0uvlQYE4nnfmXkZuxWwFSC6T4ftYX8aUhy3EmC3BVFKvGIbsVO6kgrUa7YBkLISnW7esndEByinrpsNW-4ph8nmMD_zvEc-o0Mim06c7HQc128KL8ij57Qkbx1yimHkUwyUl4TcZj4E7zHhnDk5OyLxhVad5cnOQ5y4i1Mf5tIjznzCvI_DNXvj7Uh4c3mv2NPX-19336uHn99-3H15qGwjVK4aoZ0GGFDqftB9Y9tO1XXdYd-3O9C6l1pj66VC8EKh8kq3rtEtiF55bJr6in08-x5T_L0gZTMFcjiOdsa4kJHQFVrrArZn0KVIlNCbYyqxpJMRYNaQzcFcQjZryAZEKVF0Hy4N7Lq7Lxu7QP_EEmRX13Id5P2Z8zYa-5wK8_QoQdTFS5W7On0-E1jy-BMwGXIBZ4dDSOiyGWL4zyx_Ab3QoG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20695099</pqid></control><display><type>article</type><title>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Chunmei ; Zuo, Qiang ; Zhang, Renduo</creator><creatorcontrib>Wang, Chunmei ; Zuo, Qiang ; Zhang, Renduo</creatorcontrib><description>To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2008.01.011</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>bootstrap sampling procedure ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; mathematics and statistics ; Necessary sampling size ; Random combination method ; sampling ; Sampling strategy ; Soil moisture ; soil water ; soil water content ; topsoil</subject><ispartof>Journal of hydrology (Amsterdam), 2008-05, Vol.352 (3-4), p.309-321</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</citedby><cites>FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169408000413$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20263324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Zhang, Renduo</creatorcontrib><title>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</title><title>Journal of hydrology (Amsterdam)</title><description>To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.</description><subject>bootstrap sampling procedure</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematics and statistics</subject><subject>Necessary sampling size</subject><subject>Random combination method</subject><subject>sampling</subject><subject>Sampling strategy</subject><subject>Soil moisture</subject><subject>soil water</subject><subject>soil water content</subject><subject>topsoil</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpodskPyFUl_bm7Uj-0OpUSkg_INBDmrOQ5VFWi21tNXJh8-srs0uvlQYE4nnfmXkZuxWwFSC6T4ftYX8aUhy3EmC3BVFKvGIbsVO6kgrUa7YBkLISnW7esndEByinrpsNW-4ph8nmMD_zvEc-o0Mim06c7HQc128KL8ij57Qkbx1yimHkUwyUl4TcZj4E7zHhnDk5OyLxhVad5cnOQ5y4i1Mf5tIjznzCvI_DNXvj7Uh4c3mv2NPX-19336uHn99-3H15qGwjVK4aoZ0GGFDqftB9Y9tO1XXdYd-3O9C6l1pj66VC8EKh8kq3rtEtiF55bJr6in08-x5T_L0gZTMFcjiOdsa4kJHQFVrrArZn0KVIlNCbYyqxpJMRYNaQzcFcQjZryAZEKVF0Hy4N7Lq7Lxu7QP_EEmRX13Id5P2Z8zYa-5wK8_QoQdTFS5W7On0-E1jy-BMwGXIBZ4dDSOiyGWL4zyx_Ab3QoG0</recordid><startdate>20080515</startdate><enddate>20080515</enddate><creator>Wang, Chunmei</creator><creator>Zuo, Qiang</creator><creator>Zhang, Renduo</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20080515</creationdate><title>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</title><author>Wang, Chunmei ; Zuo, Qiang ; Zhang, Renduo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-419c900de29bd9b4a5673336ebb58099b299e5f27e0f17e7f795c49501b7fe443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>bootstrap sampling procedure</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematics and statistics</topic><topic>Necessary sampling size</topic><topic>Random combination method</topic><topic>sampling</topic><topic>Sampling strategy</topic><topic>Soil moisture</topic><topic>soil water</topic><topic>soil water content</topic><topic>topsoil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Zuo, Qiang</creatorcontrib><creatorcontrib>Zhang, Renduo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunmei</au><au>Zuo, Qiang</au><au>Zhang, Renduo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2008-05-15</date><risdate>2008</risdate><volume>352</volume><issue>3-4</issue><spage>309</spage><epage>321</epage><pages>309-321</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>To develop a sampling strategy of surface soil moisture, a random combination method (RCM) was proposed and used to estimate the necessary sampling size (NSS) of soil moisture at different sampling areas. The RCM was developed based on the bootstrap sampling procedure and consideration of all possible sub-sampling combinations of available data. To examine the method, field experiments were conducted in sampling domains of 10×10, 20×20, 40×40, 55×55, 80×80, and 160×160m2. Comparisons of the RCM with other commonly used sampling methods, including the statistical, geostatistical, stratified sampling, and bootstrap methods, indicated that the RCM provided rational and efficient sampling strategies. Under the same accuracy, estimated NSS values using the RCM were much smaller than those by the statistical and bootstrap methods. In addition, the RCM has the advantage of requiring less input information, whereas the statistical and stratified sampling methods require independent data with the normal distribution, the stratified sampling method requires stratified allocation information, and the geostatistical method requires the semivariogram model. The RCM was applied to estimate the NSS of soil moisture at different scales (i.e. squares with sides of 10, 20, 40, 80, and 160m). Estimated values of the NSS under confidence levels of 90% and 95% with relative errors of 5% and 10% were linearly related to the coefficients of variation calculated from the experimental data. To enhance calculation efficiency of the RCM, the procedure was simplified using a small sub-sample size, which dramatically reduced the computation time for the NSS estimation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2008.01.011</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2008-05, Vol.352 (3-4), p.309-321 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_20695099 |
source | Elsevier ScienceDirect Journals |
subjects | bootstrap sampling procedure Earth sciences Earth, ocean, space Exact sciences and technology Hydrology Hydrology. Hydrogeology mathematics and statistics Necessary sampling size Random combination method sampling Sampling strategy Soil moisture soil water soil water content topsoil |
title | Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20necessary%20sampling%20size%20of%20surface%20soil%20moisture%20at%20different%20scales%20using%20a%20random%20combination%20method&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Wang,%20Chunmei&rft.date=2008-05-15&rft.volume=352&rft.issue=3-4&rft.spage=309&rft.epage=321&rft.pages=309-321&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2008.01.011&rft_dat=%3Cproquest_cross%3E20695099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20695099&rft_id=info:pmid/&rft_els_id=S0022169408000413&rfr_iscdi=true |