Microfluidics within a well: an injection-molded plastic array 3D culture platform
Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel i...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2018-01, Vol.18 (16), p.2433-2440 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2440 |
---|---|
container_issue | 16 |
container_start_page | 2433 |
container_title | Lab on a chip |
container_volume | 18 |
creator | Lee, Younggyun Choi, Jin Woo Yu, James Park, Dohyun Ha, Jungmin Son, Kyungmin Lee, Somin Chung, Minhwan Kim, Ho-Young Jeon, Noo Li |
description | Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems. |
doi_str_mv | 10.1039/c8lc00336j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068909478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068909478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-fdab8d78d3a625ca4cac85a788b16ddb233bf349aea67e5fac9302e8cbffdc193</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk5v_AES8EaEatKkbeKd1G8mguh1SfOBKWk7k5axf2_m5i48N-fAeXh5eQA4xegKI8KvJXMSIULyZg9MMS1IgjDj-7ubFxNwFEKDEM5ozg7BJOVxUE6n4P3VSt8bN1plZYBLO3zZDgq41M7dQNFB2zVaDrbvkrZ3Siu4cCIMVkLhvVhBcgfl6IbR6_VjML1vj8GBES7ok-2egc-H-4_yKZm_PT6Xt_NE0owPiVGiZqpgiog8zaSgUkiWiYKxGudK1SkhtSGUCy3yQmdGSE5QqpmsjVESczIDF5vche-_Rx2GqrVBxt6i0_0YqhTljCNOCxbR839o04--i-0ixSjNswhG6nJDRSMheG2qhbet8KsKo2ptuirZvPw1_RLhs23kWLda7dA_teQHY4B5xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084465909</pqid></control><display><type>article</type><title>Microfluidics within a well: an injection-molded plastic array 3D culture platform</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Younggyun ; Choi, Jin Woo ; Yu, James ; Park, Dohyun ; Ha, Jungmin ; Son, Kyungmin ; Lee, Somin ; Chung, Minhwan ; Kim, Ho-Young ; Jeon, Noo Li</creator><creatorcontrib>Lee, Younggyun ; Choi, Jin Woo ; Yu, James ; Park, Dohyun ; Ha, Jungmin ; Son, Kyungmin ; Lee, Somin ; Chung, Minhwan ; Kim, Ho-Young ; Jeon, Noo Li</creatorcontrib><description>Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c8lc00336j</identifier><identifier>PMID: 29999064</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Capillary flow ; Cell Culture Techniques - instrumentation ; Culture ; Design ; Endothelial cells ; Equipment Design ; Fibrin ; Fibroblasts ; Form factors ; Gels ; Human Umbilical Vein Endothelial Cells - cytology ; Humans ; Injection molding ; Injections ; Lab-On-A-Chip Devices ; Microfluidics ; Neovascularization, Physiologic ; Plastics ; Polydimethylsiloxane ; Proteins ; Prototyping ; Silicone resins</subject><ispartof>Lab on a chip, 2018-01, Vol.18 (16), p.2433-2440</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-fdab8d78d3a625ca4cac85a788b16ddb233bf349aea67e5fac9302e8cbffdc193</citedby><cites>FETCH-LOGICAL-c459t-fdab8d78d3a625ca4cac85a788b16ddb233bf349aea67e5fac9302e8cbffdc193</cites><orcidid>0000-0002-0562-3165 ; 0000-0002-3923-0220 ; 0000-0002-5446-4965 ; 0000-0002-9356-0255 ; 0000-0001-6720-7514 ; 0000-0002-5795-5997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29999064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Younggyun</creatorcontrib><creatorcontrib>Choi, Jin Woo</creatorcontrib><creatorcontrib>Yu, James</creatorcontrib><creatorcontrib>Park, Dohyun</creatorcontrib><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Son, Kyungmin</creatorcontrib><creatorcontrib>Lee, Somin</creatorcontrib><creatorcontrib>Chung, Minhwan</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><creatorcontrib>Jeon, Noo Li</creatorcontrib><title>Microfluidics within a well: an injection-molded plastic array 3D culture platform</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems.</description><subject>Capillary flow</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Culture</subject><subject>Design</subject><subject>Endothelial cells</subject><subject>Equipment Design</subject><subject>Fibrin</subject><subject>Fibroblasts</subject><subject>Form factors</subject><subject>Gels</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Humans</subject><subject>Injection molding</subject><subject>Injections</subject><subject>Lab-On-A-Chip Devices</subject><subject>Microfluidics</subject><subject>Neovascularization, Physiologic</subject><subject>Plastics</subject><subject>Polydimethylsiloxane</subject><subject>Proteins</subject><subject>Prototyping</subject><subject>Silicone resins</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMobk5v_AES8EaEatKkbeKd1G8mguh1SfOBKWk7k5axf2_m5i48N-fAeXh5eQA4xegKI8KvJXMSIULyZg9MMS1IgjDj-7ubFxNwFEKDEM5ozg7BJOVxUE6n4P3VSt8bN1plZYBLO3zZDgq41M7dQNFB2zVaDrbvkrZ3Siu4cCIMVkLhvVhBcgfl6IbR6_VjML1vj8GBES7ok-2egc-H-4_yKZm_PT6Xt_NE0owPiVGiZqpgiog8zaSgUkiWiYKxGudK1SkhtSGUCy3yQmdGSE5QqpmsjVESczIDF5vche-_Rx2GqrVBxt6i0_0YqhTljCNOCxbR839o04--i-0ixSjNswhG6nJDRSMheG2qhbet8KsKo2ptuirZvPw1_RLhs23kWLda7dA_teQHY4B5xA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lee, Younggyun</creator><creator>Choi, Jin Woo</creator><creator>Yu, James</creator><creator>Park, Dohyun</creator><creator>Ha, Jungmin</creator><creator>Son, Kyungmin</creator><creator>Lee, Somin</creator><creator>Chung, Minhwan</creator><creator>Kim, Ho-Young</creator><creator>Jeon, Noo Li</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0562-3165</orcidid><orcidid>https://orcid.org/0000-0002-3923-0220</orcidid><orcidid>https://orcid.org/0000-0002-5446-4965</orcidid><orcidid>https://orcid.org/0000-0002-9356-0255</orcidid><orcidid>https://orcid.org/0000-0001-6720-7514</orcidid><orcidid>https://orcid.org/0000-0002-5795-5997</orcidid></search><sort><creationdate>20180101</creationdate><title>Microfluidics within a well: an injection-molded plastic array 3D culture platform</title><author>Lee, Younggyun ; Choi, Jin Woo ; Yu, James ; Park, Dohyun ; Ha, Jungmin ; Son, Kyungmin ; Lee, Somin ; Chung, Minhwan ; Kim, Ho-Young ; Jeon, Noo Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-fdab8d78d3a625ca4cac85a788b16ddb233bf349aea67e5fac9302e8cbffdc193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capillary flow</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Culture</topic><topic>Design</topic><topic>Endothelial cells</topic><topic>Equipment Design</topic><topic>Fibrin</topic><topic>Fibroblasts</topic><topic>Form factors</topic><topic>Gels</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Humans</topic><topic>Injection molding</topic><topic>Injections</topic><topic>Lab-On-A-Chip Devices</topic><topic>Microfluidics</topic><topic>Neovascularization, Physiologic</topic><topic>Plastics</topic><topic>Polydimethylsiloxane</topic><topic>Proteins</topic><topic>Prototyping</topic><topic>Silicone resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Younggyun</creatorcontrib><creatorcontrib>Choi, Jin Woo</creatorcontrib><creatorcontrib>Yu, James</creatorcontrib><creatorcontrib>Park, Dohyun</creatorcontrib><creatorcontrib>Ha, Jungmin</creatorcontrib><creatorcontrib>Son, Kyungmin</creatorcontrib><creatorcontrib>Lee, Somin</creatorcontrib><creatorcontrib>Chung, Minhwan</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><creatorcontrib>Jeon, Noo Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Younggyun</au><au>Choi, Jin Woo</au><au>Yu, James</au><au>Park, Dohyun</au><au>Ha, Jungmin</au><au>Son, Kyungmin</au><au>Lee, Somin</au><au>Chung, Minhwan</au><au>Kim, Ho-Young</au><au>Jeon, Noo Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidics within a well: an injection-molded plastic array 3D culture platform</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>18</volume><issue>16</issue><spage>2433</spage><epage>2440</epage><pages>2433-2440</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29999064</pmid><doi>10.1039/c8lc00336j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0562-3165</orcidid><orcidid>https://orcid.org/0000-0002-3923-0220</orcidid><orcidid>https://orcid.org/0000-0002-5446-4965</orcidid><orcidid>https://orcid.org/0000-0002-9356-0255</orcidid><orcidid>https://orcid.org/0000-0001-6720-7514</orcidid><orcidid>https://orcid.org/0000-0002-5795-5997</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2018-01, Vol.18 (16), p.2433-2440 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_2068909478 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Capillary flow Cell Culture Techniques - instrumentation Culture Design Endothelial cells Equipment Design Fibrin Fibroblasts Form factors Gels Human Umbilical Vein Endothelial Cells - cytology Humans Injection molding Injections Lab-On-A-Chip Devices Microfluidics Neovascularization, Physiologic Plastics Polydimethylsiloxane Proteins Prototyping Silicone resins |
title | Microfluidics within a well: an injection-molded plastic array 3D culture platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidics%20within%20a%20well:%20an%20injection-molded%20plastic%20array%203D%20culture%20platform&rft.jtitle=Lab%20on%20a%20chip&rft.au=Lee,%20Younggyun&rft.date=2018-01-01&rft.volume=18&rft.issue=16&rft.spage=2433&rft.epage=2440&rft.pages=2433-2440&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c8lc00336j&rft_dat=%3Cproquest_cross%3E2068909478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084465909&rft_id=info:pmid/29999064&rfr_iscdi=true |