Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations

There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements in a strongly-eroded agricultural field and segmented into 2-cm intervals to 0.6 m depth in the knoll (eroded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoderma 2009-05, Vol.150 (3), p.267-277
Hauptverfasser: Farenhorst, A., McQueen, D.A.R., Saiyed, I., Hilderbrand, C., Li, S., Lobb, D.A., Messing, P., Schumacher, T.E., Papiernik, S.K., Lindstrom, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 3
container_start_page 267
container_title Geoderma
container_volume 150
creator Farenhorst, A.
McQueen, D.A.R.
Saiyed, I.
Hilderbrand, C.
Li, S.
Lobb, D.A.
Messing, P.
Schumacher, T.E.
Papiernik, S.K.
Lindstrom, M.J.
description There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements in a strongly-eroded agricultural field and segmented into 2-cm intervals to 0.6 m depth in the knoll (eroded-upper slope), to 1.0 m depth in the toeslope (deposition zone) and to 1.6 m depth in the trough (eroded water-way). Soil samples were analyzed for soil organic carbon content (SOC) ( n = 154), soil pH ( n = 155), soil carbonate content ( n = 126), CEC ( n = 126), soil texture ( n = 32), bulk density ( n = 160), 2,4-D [2,4-( dichlorophenoxy) acetic acid] or glyphosate [ N-phosphonomethylglycine] sorption by soil (Kd) ( n = 90), and 2,4-D or glyphosate sorption per unit soil organic carbon (Koc) ( n = 90). Considering all soil profiles, 2,4-D Kd values ranged from 0.12 to 2.61 L kg − 1 and were most strongly influenced by variations in SOC. In contrast, glyphosate Kd values ranged from 19 to 547 L kg − 1 and were predominantly controlled by variations in soil pH and clay content. Two hundred and fifty-two PRZM (pesticide root zone model) version 3.12.2 simulations were also performed. PRZM predicted that glyphosate would be immobile in soils even under an extreme rainfall scenario of 384 mm at one day after herbicide application. In contrast, for 2,4-D, PRZM predicted that up to 6% of the applied herbicide would move to a 15 cm depth under an actual rainfall scenario. PRZM output was particularly sensitive to input values of Kd, relative to input values of soil properties. The greatest change to PRZM outputs occurred when Kd values of toeslope profiles, ranging from 0.16 to 1.77 L kg − 1 , were replaced by those measured in knoll profiles, ranging from 0.12 to 0.50 L kg − 1 , when the amount of 2,4-D leached to a 15 cm depth increased by 29,081% (from 0.09 to 26.17 g ha − 1 ) under an actual rainfall scenario. We conclude that, when pesticide fate models such as PRZM are being used in policy analyses at larger-scales, data on Kd values in different landform elements and at the soil horizon level could be important for strengthening pesticide leaching predictions.
doi_str_mv 10.1016/j.geoderma.2009.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20687821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706109000500</els_id><sourcerecordid>20687821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-c41436abc7d5a84252f77c0b6e5c69d580c064cfd9fde97bb99547888c4831433</originalsourceid><addsrcrecordid>eNqFkM9u1DAQxi0EEkvhFZAvIDgkjL2J_9xAFRSkolYVcOBiOfaEepWNg-2lom_AW-MlhSsXWx7_vm9mPkKeMmgZMPFq137D6DHtbcsBdAu8BeD3yIYpyRvBe32fbKCSjQTBHpJHOe_qUwKHDfn1xaZgS4hzpmGmOYaJLikumErATO3s6TWmIbjgsf6m5YhSF3Ecaw3nkulNKNfU41LP6pBw-mNHS6SXV18_0hcL5rLqU4yF3sYZ6b4OPL2kzk7usPL5MXkw2injk7v7hHx-9_bT6fvm_OLsw-mb88ZutSiN61i3FXZw0vdWdbzno5QOBoG9E9r3ChyIzo1ejx61HAat-04qpVyntlW6PSHPV9-65vdDnc3sQ3Y4TXbGeMiGg1BScVZBsYIuxZwTjmZJYW_TT8PAHJM3O_M3eXNM3gA3NfkqfHbXwea64Zjs7EL-p-as60D1unKvVw7ruj8CJpOPkTr0IaErxsfwv1a_Afbzn4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20687821</pqid></control><display><type>article</type><title>Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations</title><source>Elsevier ScienceDirect Journals</source><creator>Farenhorst, A. ; McQueen, D.A.R. ; Saiyed, I. ; Hilderbrand, C. ; Li, S. ; Lobb, D.A. ; Messing, P. ; Schumacher, T.E. ; Papiernik, S.K. ; Lindstrom, M.J.</creator><creatorcontrib>Farenhorst, A. ; McQueen, D.A.R. ; Saiyed, I. ; Hilderbrand, C. ; Li, S. ; Lobb, D.A. ; Messing, P. ; Schumacher, T.E. ; Papiernik, S.K. ; Lindstrom, M.J.</creatorcontrib><description>There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements in a strongly-eroded agricultural field and segmented into 2-cm intervals to 0.6 m depth in the knoll (eroded-upper slope), to 1.0 m depth in the toeslope (deposition zone) and to 1.6 m depth in the trough (eroded water-way). Soil samples were analyzed for soil organic carbon content (SOC) ( n = 154), soil pH ( n = 155), soil carbonate content ( n = 126), CEC ( n = 126), soil texture ( n = 32), bulk density ( n = 160), 2,4-D [2,4-( dichlorophenoxy) acetic acid] or glyphosate [ N-phosphonomethylglycine] sorption by soil (Kd) ( n = 90), and 2,4-D or glyphosate sorption per unit soil organic carbon (Koc) ( n = 90). Considering all soil profiles, 2,4-D Kd values ranged from 0.12 to 2.61 L kg − 1 and were most strongly influenced by variations in SOC. In contrast, glyphosate Kd values ranged from 19 to 547 L kg − 1 and were predominantly controlled by variations in soil pH and clay content. Two hundred and fifty-two PRZM (pesticide root zone model) version 3.12.2 simulations were also performed. PRZM predicted that glyphosate would be immobile in soils even under an extreme rainfall scenario of 384 mm at one day after herbicide application. In contrast, for 2,4-D, PRZM predicted that up to 6% of the applied herbicide would move to a 15 cm depth under an actual rainfall scenario. PRZM output was particularly sensitive to input values of Kd, relative to input values of soil properties. The greatest change to PRZM outputs occurred when Kd values of toeslope profiles, ranging from 0.16 to 1.77 L kg − 1 , were replaced by those measured in knoll profiles, ranging from 0.12 to 0.50 L kg − 1 , when the amount of 2,4-D leached to a 15 cm depth increased by 29,081% (from 0.09 to 26.17 g ha − 1 ) under an actual rainfall scenario. We conclude that, when pesticide fate models such as PRZM are being used in policy analyses at larger-scales, data on Kd values in different landform elements and at the soil horizon level could be important for strengthening pesticide leaching predictions.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2009.02.002</identifier><identifier>CODEN: GEDMAB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>2,4-dichlorophenoxyacetic acid ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Glyphosate ; Herbicide sorption coefficients ; Landform element ; Leaching ; Pesticide root zone model ; Pollution, environment geology ; Sensitivity analyses ; Soil depth ; Soil properties ; Soils ; Surficial geology</subject><ispartof>Geoderma, 2009-05, Vol.150 (3), p.267-277</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-c41436abc7d5a84252f77c0b6e5c69d580c064cfd9fde97bb99547888c4831433</citedby><cites>FETCH-LOGICAL-a396t-c41436abc7d5a84252f77c0b6e5c69d580c064cfd9fde97bb99547888c4831433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016706109000500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21440859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farenhorst, A.</creatorcontrib><creatorcontrib>McQueen, D.A.R.</creatorcontrib><creatorcontrib>Saiyed, I.</creatorcontrib><creatorcontrib>Hilderbrand, C.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Lobb, D.A.</creatorcontrib><creatorcontrib>Messing, P.</creatorcontrib><creatorcontrib>Schumacher, T.E.</creatorcontrib><creatorcontrib>Papiernik, S.K.</creatorcontrib><creatorcontrib>Lindstrom, M.J.</creatorcontrib><title>Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations</title><title>Geoderma</title><description>There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements in a strongly-eroded agricultural field and segmented into 2-cm intervals to 0.6 m depth in the knoll (eroded-upper slope), to 1.0 m depth in the toeslope (deposition zone) and to 1.6 m depth in the trough (eroded water-way). Soil samples were analyzed for soil organic carbon content (SOC) ( n = 154), soil pH ( n = 155), soil carbonate content ( n = 126), CEC ( n = 126), soil texture ( n = 32), bulk density ( n = 160), 2,4-D [2,4-( dichlorophenoxy) acetic acid] or glyphosate [ N-phosphonomethylglycine] sorption by soil (Kd) ( n = 90), and 2,4-D or glyphosate sorption per unit soil organic carbon (Koc) ( n = 90). Considering all soil profiles, 2,4-D Kd values ranged from 0.12 to 2.61 L kg − 1 and were most strongly influenced by variations in SOC. In contrast, glyphosate Kd values ranged from 19 to 547 L kg − 1 and were predominantly controlled by variations in soil pH and clay content. Two hundred and fifty-two PRZM (pesticide root zone model) version 3.12.2 simulations were also performed. PRZM predicted that glyphosate would be immobile in soils even under an extreme rainfall scenario of 384 mm at one day after herbicide application. In contrast, for 2,4-D, PRZM predicted that up to 6% of the applied herbicide would move to a 15 cm depth under an actual rainfall scenario. PRZM output was particularly sensitive to input values of Kd, relative to input values of soil properties. The greatest change to PRZM outputs occurred when Kd values of toeslope profiles, ranging from 0.16 to 1.77 L kg − 1 , were replaced by those measured in knoll profiles, ranging from 0.12 to 0.50 L kg − 1 , when the amount of 2,4-D leached to a 15 cm depth increased by 29,081% (from 0.09 to 26.17 g ha − 1 ) under an actual rainfall scenario. We conclude that, when pesticide fate models such as PRZM are being used in policy analyses at larger-scales, data on Kd values in different landform elements and at the soil horizon level could be important for strengthening pesticide leaching predictions.</description><subject>2,4-dichlorophenoxyacetic acid</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glyphosate</subject><subject>Herbicide sorption coefficients</subject><subject>Landform element</subject><subject>Leaching</subject><subject>Pesticide root zone model</subject><subject>Pollution, environment geology</subject><subject>Sensitivity analyses</subject><subject>Soil depth</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Surficial geology</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u1DAQxi0EEkvhFZAvIDgkjL2J_9xAFRSkolYVcOBiOfaEepWNg-2lom_AW-MlhSsXWx7_vm9mPkKeMmgZMPFq137D6DHtbcsBdAu8BeD3yIYpyRvBe32fbKCSjQTBHpJHOe_qUwKHDfn1xaZgS4hzpmGmOYaJLikumErATO3s6TWmIbjgsf6m5YhSF3Ecaw3nkulNKNfU41LP6pBw-mNHS6SXV18_0hcL5rLqU4yF3sYZ6b4OPL2kzk7usPL5MXkw2injk7v7hHx-9_bT6fvm_OLsw-mb88ZutSiN61i3FXZw0vdWdbzno5QOBoG9E9r3ChyIzo1ejx61HAat-04qpVyntlW6PSHPV9-65vdDnc3sQ3Y4TXbGeMiGg1BScVZBsYIuxZwTjmZJYW_TT8PAHJM3O_M3eXNM3gA3NfkqfHbXwea64Zjs7EL-p-as60D1unKvVw7ruj8CJpOPkTr0IaErxsfwv1a_Afbzn4k</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Farenhorst, A.</creator><creator>McQueen, D.A.R.</creator><creator>Saiyed, I.</creator><creator>Hilderbrand, C.</creator><creator>Li, S.</creator><creator>Lobb, D.A.</creator><creator>Messing, P.</creator><creator>Schumacher, T.E.</creator><creator>Papiernik, S.K.</creator><creator>Lindstrom, M.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20090515</creationdate><title>Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations</title><author>Farenhorst, A. ; McQueen, D.A.R. ; Saiyed, I. ; Hilderbrand, C. ; Li, S. ; Lobb, D.A. ; Messing, P. ; Schumacher, T.E. ; Papiernik, S.K. ; Lindstrom, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-c41436abc7d5a84252f77c0b6e5c69d580c064cfd9fde97bb99547888c4831433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>2,4-dichlorophenoxyacetic acid</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glyphosate</topic><topic>Herbicide sorption coefficients</topic><topic>Landform element</topic><topic>Leaching</topic><topic>Pesticide root zone model</topic><topic>Pollution, environment geology</topic><topic>Sensitivity analyses</topic><topic>Soil depth</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farenhorst, A.</creatorcontrib><creatorcontrib>McQueen, D.A.R.</creatorcontrib><creatorcontrib>Saiyed, I.</creatorcontrib><creatorcontrib>Hilderbrand, C.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Lobb, D.A.</creatorcontrib><creatorcontrib>Messing, P.</creatorcontrib><creatorcontrib>Schumacher, T.E.</creatorcontrib><creatorcontrib>Papiernik, S.K.</creatorcontrib><creatorcontrib>Lindstrom, M.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farenhorst, A.</au><au>McQueen, D.A.R.</au><au>Saiyed, I.</au><au>Hilderbrand, C.</au><au>Li, S.</au><au>Lobb, D.A.</au><au>Messing, P.</au><au>Schumacher, T.E.</au><au>Papiernik, S.K.</au><au>Lindstrom, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations</atitle><jtitle>Geoderma</jtitle><date>2009-05-15</date><risdate>2009</risdate><volume>150</volume><issue>3</issue><spage>267</spage><epage>277</epage><pages>267-277</pages><issn>0016-7061</issn><eissn>1872-6259</eissn><coden>GEDMAB</coden><abstract>There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements in a strongly-eroded agricultural field and segmented into 2-cm intervals to 0.6 m depth in the knoll (eroded-upper slope), to 1.0 m depth in the toeslope (deposition zone) and to 1.6 m depth in the trough (eroded water-way). Soil samples were analyzed for soil organic carbon content (SOC) ( n = 154), soil pH ( n = 155), soil carbonate content ( n = 126), CEC ( n = 126), soil texture ( n = 32), bulk density ( n = 160), 2,4-D [2,4-( dichlorophenoxy) acetic acid] or glyphosate [ N-phosphonomethylglycine] sorption by soil (Kd) ( n = 90), and 2,4-D or glyphosate sorption per unit soil organic carbon (Koc) ( n = 90). Considering all soil profiles, 2,4-D Kd values ranged from 0.12 to 2.61 L kg − 1 and were most strongly influenced by variations in SOC. In contrast, glyphosate Kd values ranged from 19 to 547 L kg − 1 and were predominantly controlled by variations in soil pH and clay content. Two hundred and fifty-two PRZM (pesticide root zone model) version 3.12.2 simulations were also performed. PRZM predicted that glyphosate would be immobile in soils even under an extreme rainfall scenario of 384 mm at one day after herbicide application. In contrast, for 2,4-D, PRZM predicted that up to 6% of the applied herbicide would move to a 15 cm depth under an actual rainfall scenario. PRZM output was particularly sensitive to input values of Kd, relative to input values of soil properties. The greatest change to PRZM outputs occurred when Kd values of toeslope profiles, ranging from 0.16 to 1.77 L kg − 1 , were replaced by those measured in knoll profiles, ranging from 0.12 to 0.50 L kg − 1 , when the amount of 2,4-D leached to a 15 cm depth increased by 29,081% (from 0.09 to 26.17 g ha − 1 ) under an actual rainfall scenario. We conclude that, when pesticide fate models such as PRZM are being used in policy analyses at larger-scales, data on Kd values in different landform elements and at the soil horizon level could be important for strengthening pesticide leaching predictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2009.02.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7061
ispartof Geoderma, 2009-05, Vol.150 (3), p.267-277
issn 0016-7061
1872-6259
language eng
recordid cdi_proquest_miscellaneous_20687821
source Elsevier ScienceDirect Journals
subjects 2,4-dichlorophenoxyacetic acid
Agronomy. Soil science and plant productions
Biological and medical sciences
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Glyphosate
Herbicide sorption coefficients
Landform element
Leaching
Pesticide root zone model
Pollution, environment geology
Sensitivity analyses
Soil depth
Soil properties
Soils
Surficial geology
title Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variations%20in%20soil%20properties%20and%20herbicide%20sorption%20coefficients%20with%20depth%20in%20relation%20to%20PRZM%20(pesticide%20root%20zone%20model)%20calculations&rft.jtitle=Geoderma&rft.au=Farenhorst,%20A.&rft.date=2009-05-15&rft.volume=150&rft.issue=3&rft.spage=267&rft.epage=277&rft.pages=267-277&rft.issn=0016-7061&rft.eissn=1872-6259&rft.coden=GEDMAB&rft_id=info:doi/10.1016/j.geoderma.2009.02.002&rft_dat=%3Cproquest_cross%3E20687821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20687821&rft_id=info:pmid/&rft_els_id=S0016706109000500&rfr_iscdi=true