Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—an in vitro study
In this study, ordered and uniform TiO2 nanotubular structures were obtained on the surface of the Ti15Mo alloy by anodic oxidation. The amorphous state of TiO2 nanotubes formed under different anodization conditions was investigated. Crystallization of TiO2 into anatase phase occurs during annealin...
Gespeichert in:
Veröffentlicht in: | Journal of applied biomaterials & functional materials 2018-10, Vol.16 (4), p.222-229 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 4 |
container_start_page | 222 |
container_title | Journal of applied biomaterials & functional materials |
container_volume | 16 |
creator | Rangel, André L.R. Chaves, Javier A. M. Escada, Ana L.A. Konatu, Reginaldo T. Popat, Ketul C. Alves Claro, Ana P. Rosifini |
description | In this study, ordered and uniform TiO2 nanotubular structures were obtained on the surface of the Ti15Mo alloy by anodic oxidation. The amorphous state of TiO2 nanotubes formed under different anodization conditions was investigated. Crystallization of TiO2 into anatase phase occurs during annealing at temperatures of around 400°C, whereas anatase to rutile transformation starts around 500°C and is completed at 800°C. Phase transformations in annealed samples led to morphological changes of tubular nanostructures, suggesting that the oxide layer formed at the nanotube/substrate interface serves as nucleation sites for more stable phases of TiO2. The proliferation of fibroblasts cells under annealing conditions of 450°C, and of untreated samples (control group), was evaluated after 1, 4, and 7 days in cell culture using fluorescence microscopy images. A gradual increase in the number and size of cells was observed, indicating a non-toxic alloy. There was also better surface coverage on anodized samples compared with the untreated group; as well as increased development of the cytoskeleton in samples after anodization. The results of this study showed that the growth of TiO2 nanotubular structures associated with annealing allow better cell adhesion on the Ti15Mo alloy surface. |
doi_str_mv | 10.1177/2280800018782851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068346556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2280800018782851</sage_id><sourcerecordid>2068346556</sourcerecordid><originalsourceid>FETCH-LOGICAL-p296t-e3f7bd1daa9fc96337a20e1464f3974a9f6d000a8e5ac4f62155effa927f24023</originalsourceid><addsrcrecordid>eNpdkMtKAzEYhYMoWGr3LgNu3IzmMrnMUopaoaWbunA1pDNJmzImdZIo3fkQPqFPYkoFpav_cM7Hz-EAcInRDcZC3BIikUQIYSkkkQyfgMHeKvbe6T99DkYhbLJAEvOK0QF4mfnWGtuoaL2D3sC41nBhMZt5qLrO72BIvVGNzkHv02qdwzmBTjkf01LDVe8_4vr780s5aB18t7H3MMTU7i7AmVFd0KPfOwTPD_eL8aSYzh-fxnfTYksqHgtNjVi2uFWqMk3FKRWKII1LXhpaiTK7vM19ldRMNaXhBDOmjVEVEYaUiNAhuD783fb-LekQ61cbGt11ymmfQk0Ql7TkjPGMXh2hG596l9vVhGIqBMu7ZKo4UEGt9B-BUb3fuj7emv4AW0pwLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313775081</pqid></control><display><type>article</type><title>Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—an in vitro study</title><source>SAGE Open Access Journals</source><creator>Rangel, André L.R. ; Chaves, Javier A. M. ; Escada, Ana L.A. ; Konatu, Reginaldo T. ; Popat, Ketul C. ; Alves Claro, Ana P. Rosifini</creator><creatorcontrib>Rangel, André L.R. ; Chaves, Javier A. M. ; Escada, Ana L.A. ; Konatu, Reginaldo T. ; Popat, Ketul C. ; Alves Claro, Ana P. Rosifini</creatorcontrib><description>In this study, ordered and uniform TiO2 nanotubular structures were obtained on the surface of the Ti15Mo alloy by anodic oxidation. The amorphous state of TiO2 nanotubes formed under different anodization conditions was investigated. Crystallization of TiO2 into anatase phase occurs during annealing at temperatures of around 400°C, whereas anatase to rutile transformation starts around 500°C and is completed at 800°C. Phase transformations in annealed samples led to morphological changes of tubular nanostructures, suggesting that the oxide layer formed at the nanotube/substrate interface serves as nucleation sites for more stable phases of TiO2. The proliferation of fibroblasts cells under annealing conditions of 450°C, and of untreated samples (control group), was evaluated after 1, 4, and 7 days in cell culture using fluorescence microscopy images. A gradual increase in the number and size of cells was observed, indicating a non-toxic alloy. There was also better surface coverage on anodized samples compared with the untreated group; as well as increased development of the cytoskeleton in samples after anodization. The results of this study showed that the growth of TiO2 nanotubular structures associated with annealing allow better cell adhesion on the Ti15Mo alloy surface.</description><identifier>ISSN: 2280-8000</identifier><identifier>EISSN: 2280-8000</identifier><identifier>DOI: 10.1177/2280800018782851</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Anatase ; Annealing ; Anodizing ; Cell adhesion ; Cell adhesion & migration ; Cell culture ; Cell proliferation ; Cell size ; Crystallization ; Cytoskeleton ; Fibroblasts ; Fluorescence ; Fluorescence microscopy ; Nanotechnology ; Nanotubes ; Nucleation ; Oxidation ; Phase transitions ; Substrates ; Titanium dioxide</subject><ispartof>Journal of applied biomaterials & functional materials, 2018-10, Vol.16 (4), p.222-229</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/2280800018782851$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/2280800018782851$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21945,27830,27901,27902,44921,45309</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1177/2280800018782851?utm_source=summon&utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc></links><search><creatorcontrib>Rangel, André L.R.</creatorcontrib><creatorcontrib>Chaves, Javier A. M.</creatorcontrib><creatorcontrib>Escada, Ana L.A.</creatorcontrib><creatorcontrib>Konatu, Reginaldo T.</creatorcontrib><creatorcontrib>Popat, Ketul C.</creatorcontrib><creatorcontrib>Alves Claro, Ana P. Rosifini</creatorcontrib><title>Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—an in vitro study</title><title>Journal of applied biomaterials & functional materials</title><description>In this study, ordered and uniform TiO2 nanotubular structures were obtained on the surface of the Ti15Mo alloy by anodic oxidation. The amorphous state of TiO2 nanotubes formed under different anodization conditions was investigated. Crystallization of TiO2 into anatase phase occurs during annealing at temperatures of around 400°C, whereas anatase to rutile transformation starts around 500°C and is completed at 800°C. Phase transformations in annealed samples led to morphological changes of tubular nanostructures, suggesting that the oxide layer formed at the nanotube/substrate interface serves as nucleation sites for more stable phases of TiO2. The proliferation of fibroblasts cells under annealing conditions of 450°C, and of untreated samples (control group), was evaluated after 1, 4, and 7 days in cell culture using fluorescence microscopy images. A gradual increase in the number and size of cells was observed, indicating a non-toxic alloy. There was also better surface coverage on anodized samples compared with the untreated group; as well as increased development of the cytoskeleton in samples after anodization. The results of this study showed that the growth of TiO2 nanotubular structures associated with annealing allow better cell adhesion on the Ti15Mo alloy surface.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Anodizing</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Cell size</subject><subject>Crystallization</subject><subject>Cytoskeleton</subject><subject>Fibroblasts</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nucleation</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><issn>2280-8000</issn><issn>2280-8000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkMtKAzEYhYMoWGr3LgNu3IzmMrnMUopaoaWbunA1pDNJmzImdZIo3fkQPqFPYkoFpav_cM7Hz-EAcInRDcZC3BIikUQIYSkkkQyfgMHeKvbe6T99DkYhbLJAEvOK0QF4mfnWGtuoaL2D3sC41nBhMZt5qLrO72BIvVGNzkHv02qdwzmBTjkf01LDVe8_4vr780s5aB18t7H3MMTU7i7AmVFd0KPfOwTPD_eL8aSYzh-fxnfTYksqHgtNjVi2uFWqMk3FKRWKII1LXhpaiTK7vM19ldRMNaXhBDOmjVEVEYaUiNAhuD783fb-LekQ61cbGt11ymmfQk0Ql7TkjPGMXh2hG596l9vVhGIqBMu7ZKo4UEGt9B-BUb3fuj7emv4AW0pwLQ</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Rangel, André L.R.</creator><creator>Chaves, Javier A. M.</creator><creator>Escada, Ana L.A.</creator><creator>Konatu, Reginaldo T.</creator><creator>Popat, Ketul C.</creator><creator>Alves Claro, Ana P. Rosifini</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>JG9</scope><scope>KB0</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>201810</creationdate><title>Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—an in vitro study</title><author>Rangel, André L.R. ; Chaves, Javier A. M. ; Escada, Ana L.A. ; Konatu, Reginaldo T. ; Popat, Ketul C. ; Alves Claro, Ana P. Rosifini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p296t-e3f7bd1daa9fc96337a20e1464f3974a9f6d000a8e5ac4f62155effa927f24023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Anodizing</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Cell size</topic><topic>Crystallization</topic><topic>Cytoskeleton</topic><topic>Fibroblasts</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nucleation</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rangel, André L.R.</creatorcontrib><creatorcontrib>Chaves, Javier A. M.</creatorcontrib><creatorcontrib>Escada, Ana L.A.</creatorcontrib><creatorcontrib>Konatu, Reginaldo T.</creatorcontrib><creatorcontrib>Popat, Ketul C.</creatorcontrib><creatorcontrib>Alves Claro, Ana P. Rosifini</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Materials Research Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied biomaterials & functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rangel, André L.R.</au><au>Chaves, Javier A. M.</au><au>Escada, Ana L.A.</au><au>Konatu, Reginaldo T.</au><au>Popat, Ketul C.</au><au>Alves Claro, Ana P. Rosifini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—an in vitro study</atitle><jtitle>Journal of applied biomaterials & functional materials</jtitle><date>2018-10</date><risdate>2018</risdate><volume>16</volume><issue>4</issue><spage>222</spage><epage>229</epage><pages>222-229</pages><issn>2280-8000</issn><eissn>2280-8000</eissn><abstract>In this study, ordered and uniform TiO2 nanotubular structures were obtained on the surface of the Ti15Mo alloy by anodic oxidation. The amorphous state of TiO2 nanotubes formed under different anodization conditions was investigated. Crystallization of TiO2 into anatase phase occurs during annealing at temperatures of around 400°C, whereas anatase to rutile transformation starts around 500°C and is completed at 800°C. Phase transformations in annealed samples led to morphological changes of tubular nanostructures, suggesting that the oxide layer formed at the nanotube/substrate interface serves as nucleation sites for more stable phases of TiO2. The proliferation of fibroblasts cells under annealing conditions of 450°C, and of untreated samples (control group), was evaluated after 1, 4, and 7 days in cell culture using fluorescence microscopy images. A gradual increase in the number and size of cells was observed, indicating a non-toxic alloy. There was also better surface coverage on anodized samples compared with the untreated group; as well as increased development of the cytoskeleton in samples after anodization. The results of this study showed that the growth of TiO2 nanotubular structures associated with annealing allow better cell adhesion on the Ti15Mo alloy surface.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/2280800018782851</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2280-8000 |
ispartof | Journal of applied biomaterials & functional materials, 2018-10, Vol.16 (4), p.222-229 |
issn | 2280-8000 2280-8000 |
language | eng |
recordid | cdi_proquest_miscellaneous_2068346556 |
source | SAGE Open Access Journals |
subjects | Anatase Annealing Anodizing Cell adhesion Cell adhesion & migration Cell culture Cell proliferation Cell size Crystallization Cytoskeleton Fibroblasts Fluorescence Fluorescence microscopy Nanotechnology Nanotubes Nucleation Oxidation Phase transitions Substrates Titanium dioxide |
title | Modification of the Ti15Mo alloy surface through TiO2 nanotube growth—an in vitro study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20the%20Ti15Mo%20alloy%20surface%20through%20TiO2%20nanotube%20growth%E2%80%94an%20in%20vitro%20study&rft.jtitle=Journal%20of%20applied%20biomaterials%20&%20functional%20materials&rft.au=Rangel,%20Andr%C3%A9%20L.R.&rft.date=2018-10&rft.volume=16&rft.issue=4&rft.spage=222&rft.epage=229&rft.pages=222-229&rft.issn=2280-8000&rft.eissn=2280-8000&rft_id=info:doi/10.1177/2280800018782851&rft_dat=%3Cproquest_AFRWT%3E2068346556%3C/proquest_AFRWT%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313775081&rft_id=info:pmid/&rft_sage_id=10.1177_2280800018782851&rfr_iscdi=true |