A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data

This paper proposes a novel multi-Laplacian prior (MLP) and augmented Lagrangian method (ALM) approach for gene interactions and putative transcription factors (TFs) identification from time-course gene microarray data. It employs a non-linear time-varying auto-regressive (N-TVAR) model and the Maxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2019-11, Vol.16 (6), p.1816-1829
Hauptverfasser: Zhang, Li, Wu, Ho-Chun, Ho, Cheuk-Hei, Chan, Shing-Chow
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1829
container_issue 6
container_start_page 1816
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 16
creator Zhang, Li
Wu, Ho-Chun
Ho, Cheuk-Hei
Chan, Shing-Chow
description This paper proposes a novel multi-Laplacian prior (MLP) and augmented Lagrangian method (ALM) approach for gene interactions and putative transcription factors (TFs) identification from time-course gene microarray data. It employs a non-linear time-varying auto-regressive (N-TVAR) model and the Maximum-A-Posteriori-Probability method for incorporating the multi-Laplacian prior and the continuity constraint. The MLP allows connections to/from a gene to be better preserved for putative TF identification in non-stationarity gene regulatory network as compared with conventional L 1 -based penalties. Moreover, the ALM allows the resultant non-smooth L 1 -based penalties to be decoupled from the remaining smooth terms, so that the former and latter can be efficiently solved using a low-complexity proximity operator and smooth optimization technique, respectively. Synthetic and real time-course gene microarray datasets are tested to evaluate the performance of the proposed method. Experimental results show that the proposed method gives better accuracy and higher computational speed than our previous work using smoothed approximation. Moreover, its performance, without the use of ChIP-chip data, is found to be highly comparable with other state-of-the-art methods integrating both ChIP-chip and gene microarray data. It suggests that the proposed method may serve as a useful exploratory tool for putative TF identification with reduced experimental cost.
doi_str_mv 10.1109/TCBB.2018.2828810
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068343220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8344424</ieee_id><sourcerecordid>2068343220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-cc709b04241abbc401dac733c1e32b536838d07bd0d13a32a80556dbe736d9e93</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSMEog_4AQgJWWLDJoNfeXiZDqUgTQGhgW1049xJXZI4tR3R-U38SZzO0AUrW_J3zr3HJ0leMbpijKr32_XFxYpTVq54ycuS0SfJKcuyIlUql0-Xu8zSTOXiJDnz_pZSLhWVz5MTrpQSisnT5E9Fruc-mHQDUw_awEi-OWMdgbEl1dwNOAZsyQY6B2O3PFfT5CzoGxIsCTdILu-n3joI1u1JNUK_98YTuyNbM2D6E9zejB25whEfLLfRxmtnpmBshMl37Ob-IP6C4bd1vzzZxfEPgmuj4yjnYE8-QIAXybMd9B5fHs_z5MfHy-36U7r5evV5XW1SLZkKqdYFVQ2VXDJoGi0pa0EXQmiGgjeZyEtRtrRoWtoyAYJDSbMsbxssRN4qVOI8eXfwjUHvZvShHozX2Pcwop19zWm0kIJzGtG3_6G3dnYxWKREXCDnuWCRYgcqxvHe4a6enBni19SM1kuT9dJkvTRZH5uMmjdH57kZsH1U_KsuAq8PgEHEx-e4mIzJxV8YP6Pj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324162631</pqid></control><display><type>article</type><title>A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Li ; Wu, Ho-Chun ; Ho, Cheuk-Hei ; Chan, Shing-Chow</creator><creatorcontrib>Zhang, Li ; Wu, Ho-Chun ; Ho, Cheuk-Hei ; Chan, Shing-Chow</creatorcontrib><description>This paper proposes a novel multi-Laplacian prior (MLP) and augmented Lagrangian method (ALM) approach for gene interactions and putative transcription factors (TFs) identification from time-course gene microarray data. It employs a non-linear time-varying auto-regressive (N-TVAR) model and the Maximum-A-Posteriori-Probability method for incorporating the multi-Laplacian prior and the continuity constraint. The MLP allows connections to/from a gene to be better preserved for putative TF identification in non-stationarity gene regulatory network as compared with conventional L 1 -based penalties. Moreover, the ALM allows the resultant non-smooth L 1 -based penalties to be decoupled from the remaining smooth terms, so that the former and latter can be efficiently solved using a low-complexity proximity operator and smooth optimization technique, respectively. Synthetic and real time-course gene microarray datasets are tested to evaluate the performance of the proposed method. Experimental results show that the proposed method gives better accuracy and higher computational speed than our previous work using smoothed approximation. Moreover, its performance, without the use of ChIP-chip data, is found to be highly comparable with other state-of-the-art methods integrating both ChIP-chip and gene microarray data. It suggests that the proposed method may serve as a useful exploratory tool for putative TF identification with reduced experimental cost.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2018.2828810</identifier><identifier>PMID: 29993914</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>augmented Lagrangian method ; Autoregressive models ; Bayes methods ; Biological system modeling ; Computer applications ; Data models ; DNA microarrays ; Gene expression ; gene microarray ; Gene regulatory networks ; hub gene ; multi-Laplacian prior ; Operators (mathematics) ; Optimization ; Optimization techniques ; Performance evaluation ; Predictive models ; Regression analysis ; time-course data ; transcript factor ; Transcription factors</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2019-11, Vol.16 (6), p.1816-1829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-cc709b04241abbc401dac733c1e32b536838d07bd0d13a32a80556dbe736d9e93</citedby><cites>FETCH-LOGICAL-c419t-cc709b04241abbc401dac733c1e32b536838d07bd0d13a32a80556dbe736d9e93</cites><orcidid>0000-0003-1641-7831 ; 0000-0001-7212-4182 ; 0000-0003-1951-8005 ; 0000-0002-4555-3675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8344424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8344424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29993914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wu, Ho-Chun</creatorcontrib><creatorcontrib>Ho, Cheuk-Hei</creatorcontrib><creatorcontrib>Chan, Shing-Chow</creatorcontrib><title>A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>This paper proposes a novel multi-Laplacian prior (MLP) and augmented Lagrangian method (ALM) approach for gene interactions and putative transcription factors (TFs) identification from time-course gene microarray data. It employs a non-linear time-varying auto-regressive (N-TVAR) model and the Maximum-A-Posteriori-Probability method for incorporating the multi-Laplacian prior and the continuity constraint. The MLP allows connections to/from a gene to be better preserved for putative TF identification in non-stationarity gene regulatory network as compared with conventional L 1 -based penalties. Moreover, the ALM allows the resultant non-smooth L 1 -based penalties to be decoupled from the remaining smooth terms, so that the former and latter can be efficiently solved using a low-complexity proximity operator and smooth optimization technique, respectively. Synthetic and real time-course gene microarray datasets are tested to evaluate the performance of the proposed method. Experimental results show that the proposed method gives better accuracy and higher computational speed than our previous work using smoothed approximation. Moreover, its performance, without the use of ChIP-chip data, is found to be highly comparable with other state-of-the-art methods integrating both ChIP-chip and gene microarray data. It suggests that the proposed method may serve as a useful exploratory tool for putative TF identification with reduced experimental cost.</description><subject>augmented Lagrangian method</subject><subject>Autoregressive models</subject><subject>Bayes methods</subject><subject>Biological system modeling</subject><subject>Computer applications</subject><subject>Data models</subject><subject>DNA microarrays</subject><subject>Gene expression</subject><subject>gene microarray</subject><subject>Gene regulatory networks</subject><subject>hub gene</subject><subject>multi-Laplacian prior</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Regression analysis</subject><subject>time-course data</subject><subject>transcript factor</subject><subject>Transcription factors</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtv1DAUhSMEog_4AQgJWWLDJoNfeXiZDqUgTQGhgW1049xJXZI4tR3R-U38SZzO0AUrW_J3zr3HJ0leMbpijKr32_XFxYpTVq54ycuS0SfJKcuyIlUql0-Xu8zSTOXiJDnz_pZSLhWVz5MTrpQSisnT5E9Fruc-mHQDUw_awEi-OWMdgbEl1dwNOAZsyQY6B2O3PFfT5CzoGxIsCTdILu-n3joI1u1JNUK_98YTuyNbM2D6E9zejB25whEfLLfRxmtnpmBshMl37Ob-IP6C4bd1vzzZxfEPgmuj4yjnYE8-QIAXybMd9B5fHs_z5MfHy-36U7r5evV5XW1SLZkKqdYFVQ2VXDJoGi0pa0EXQmiGgjeZyEtRtrRoWtoyAYJDSbMsbxssRN4qVOI8eXfwjUHvZvShHozX2Pcwop19zWm0kIJzGtG3_6G3dnYxWKREXCDnuWCRYgcqxvHe4a6enBni19SM1kuT9dJkvTRZH5uMmjdH57kZsH1U_KsuAq8PgEHEx-e4mIzJxV8YP6Pj</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Li</creator><creator>Wu, Ho-Chun</creator><creator>Ho, Cheuk-Hei</creator><creator>Chan, Shing-Chow</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1641-7831</orcidid><orcidid>https://orcid.org/0000-0001-7212-4182</orcidid><orcidid>https://orcid.org/0000-0003-1951-8005</orcidid><orcidid>https://orcid.org/0000-0002-4555-3675</orcidid></search><sort><creationdate>20191101</creationdate><title>A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data</title><author>Zhang, Li ; Wu, Ho-Chun ; Ho, Cheuk-Hei ; Chan, Shing-Chow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-cc709b04241abbc401dac733c1e32b536838d07bd0d13a32a80556dbe736d9e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>augmented Lagrangian method</topic><topic>Autoregressive models</topic><topic>Bayes methods</topic><topic>Biological system modeling</topic><topic>Computer applications</topic><topic>Data models</topic><topic>DNA microarrays</topic><topic>Gene expression</topic><topic>gene microarray</topic><topic>Gene regulatory networks</topic><topic>hub gene</topic><topic>multi-Laplacian prior</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Regression analysis</topic><topic>time-course data</topic><topic>transcript factor</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wu, Ho-Chun</creatorcontrib><creatorcontrib>Ho, Cheuk-Hei</creatorcontrib><creatorcontrib>Chan, Shing-Chow</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Li</au><au>Wu, Ho-Chun</au><au>Ho, Cheuk-Hei</au><au>Chan, Shing-Chow</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>16</volume><issue>6</issue><spage>1816</spage><epage>1829</epage><pages>1816-1829</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>This paper proposes a novel multi-Laplacian prior (MLP) and augmented Lagrangian method (ALM) approach for gene interactions and putative transcription factors (TFs) identification from time-course gene microarray data. It employs a non-linear time-varying auto-regressive (N-TVAR) model and the Maximum-A-Posteriori-Probability method for incorporating the multi-Laplacian prior and the continuity constraint. The MLP allows connections to/from a gene to be better preserved for putative TF identification in non-stationarity gene regulatory network as compared with conventional L 1 -based penalties. Moreover, the ALM allows the resultant non-smooth L 1 -based penalties to be decoupled from the remaining smooth terms, so that the former and latter can be efficiently solved using a low-complexity proximity operator and smooth optimization technique, respectively. Synthetic and real time-course gene microarray datasets are tested to evaluate the performance of the proposed method. Experimental results show that the proposed method gives better accuracy and higher computational speed than our previous work using smoothed approximation. Moreover, its performance, without the use of ChIP-chip data, is found to be highly comparable with other state-of-the-art methods integrating both ChIP-chip and gene microarray data. It suggests that the proposed method may serve as a useful exploratory tool for putative TF identification with reduced experimental cost.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29993914</pmid><doi>10.1109/TCBB.2018.2828810</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1641-7831</orcidid><orcidid>https://orcid.org/0000-0001-7212-4182</orcidid><orcidid>https://orcid.org/0000-0003-1951-8005</orcidid><orcidid>https://orcid.org/0000-0002-4555-3675</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2019-11, Vol.16 (6), p.1816-1829
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_2068343220
source IEEE Electronic Library (IEL)
subjects augmented Lagrangian method
Autoregressive models
Bayes methods
Biological system modeling
Computer applications
Data models
DNA microarrays
Gene expression
gene microarray
Gene regulatory networks
hub gene
multi-Laplacian prior
Operators (mathematics)
Optimization
Optimization techniques
Performance evaluation
Predictive models
Regression analysis
time-course data
transcript factor
Transcription factors
title A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Laplacian%20Prior%20and%20Augmented%20Lagrangian%20Approach%20to%20the%20Exploratory%20Analysis%20of%20Time-Varying%20Gene%20and%20Transcriptional%20Regulatory%20Networks%20for%20Gene%20Microarray%20Data&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Zhang,%20Li&rft.date=2019-11-01&rft.volume=16&rft.issue=6&rft.spage=1816&rft.epage=1829&rft.pages=1816-1829&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2018.2828810&rft_dat=%3Cproquest_RIE%3E2068343220%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324162631&rft_id=info:pmid/29993914&rft_ieee_id=8344424&rfr_iscdi=true