Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies
The Christmas Island red crab, Gecarcoidea natalis , is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gai...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2018-10, Vol.20 (5), p.654-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 5 |
container_start_page | 654 |
container_title | Marine biotechnology (New York, N.Y.) |
container_volume | 20 |
creator | Gan, Han Ming Austin, Christopher Linton, Stuart |
description | The Christmas Island red crab,
Gecarcoidea natalis
, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist,
G. natalis
would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of
G. natalis
, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using
in silico
approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase (“classic cellulase”) transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in
G. natalis
with
in silico
support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the
G. natalis
GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys. |
doi_str_mv | 10.1007/s10126-018-9836-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068342337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068342337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b68415664b78559b756aa3a76e97ccfb28e7a7c5286e1851f6542dbd9285fe623</originalsourceid><addsrcrecordid>eNp1kVGL1DAUhYso7rr6A3yRgC8rWE3SNkkfh7qOAwuCrj74Um7TWydLm4xJKox_1r9iOjOuKPiUCzn3O-dysuwpo68YpfJ1YJRxkVOm8loVIuf3snNWLgMvxP27mauz7FEItzTtyII-zM54XdcVk-V59vPGgw3am110E-br2fTYk02PNprBaIjGWeIG0oDv3Hbfe4hIVjqa70iu7I_9hIFcNqsv-xdk8G4icYuk2XoT4gSBbMIIticfErLx0L0ka9TgtUsmQCxEGE0giwLIZ5fAg_MHwsbqcQ4n678TvkGfvBfeHCJoBEsW-0BMGty0g5RwCfcxzr3B8Dh7MMAY8Mnpvcg-vb26ad7l1-_Xm2Z1neuyUDHvhCpZJUTZSVVVdScrAVCAFFhLrYeOK5QgdcWVQKYqNoiq5H3X11xVAwpeXGSXR-7Ou28zhthOJmgc0_3o5tByKlRR8qKQSfr8H-mtm71N6Q4qphQ9ANlRpb0LwePQ7ryZwO9bRtul_fbYfpvab5f222Xn2Yk8dxP2dxu_604CfhSE9GW_ov9j_X_qL24EvPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068188062</pqid></control><display><type>article</type><title>Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gan, Han Ming ; Austin, Christopher ; Linton, Stuart</creator><creatorcontrib>Gan, Han Ming ; Austin, Christopher ; Linton, Stuart</creatorcontrib><description>The Christmas Island red crab,
Gecarcoidea natalis
, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist,
G. natalis
would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of
G. natalis
, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using
in silico
approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase (“classic cellulase”) transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in
G. natalis
with
in silico
support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the
G. natalis
GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.</description><identifier>ISSN: 1436-2228</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-018-9836-2</identifier><identifier>PMID: 29995174</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Aquatic crustaceans ; Arthropod Proteins - chemistry ; Arthropod Proteins - classification ; Arthropod Proteins - genetics ; Arthropod Proteins - metabolism ; Assembly ; Biomedical and Life Sciences ; Biotechnology ; Brachyura - classification ; Brachyura - enzymology ; Brachyura - genetics ; Carbohydrate metabolism ; Carbohydrate Metabolism - genetics ; Carbohydrates ; Cellulase ; Cellulase - chemistry ; Cellulase - classification ; Cellulase - genetics ; Cellulase - metabolism ; Coding ; Comparative analysis ; Comparative studies ; Crabs ; Crustaceans ; Databases, Genetic ; Diet ; Digestive enzymes ; Engineering ; Enzymes ; Freshwater & Marine Ecology ; Gene Expression ; Gene Ontology ; Homology ; Isoenzymes - chemistry ; Isoenzymes - classification ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Leaf litter ; Life Sciences ; Marine crustaceans ; Metabolism ; Microbiology ; Midgut ; Modelling ; Models, Molecular ; Molecular Sequence Annotation ; Original Article ; Phylogeny ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Proteins ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Alignment ; Structural Homology, Protein ; Sugar ; Transcription ; Transcriptome ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2018-10, Vol.20 (5), p.654-665</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Marine Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b68415664b78559b756aa3a76e97ccfb28e7a7c5286e1851f6542dbd9285fe623</citedby><cites>FETCH-LOGICAL-c438t-b68415664b78559b756aa3a76e97ccfb28e7a7c5286e1851f6542dbd9285fe623</cites><orcidid>0000-0002-8292-7816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10126-018-9836-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10126-018-9836-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29995174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Han Ming</creatorcontrib><creatorcontrib>Austin, Christopher</creatorcontrib><creatorcontrib>Linton, Stuart</creatorcontrib><title>Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><addtitle>Mar Biotechnol (NY)</addtitle><description>The Christmas Island red crab,
Gecarcoidea natalis
, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist,
G. natalis
would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of
G. natalis
, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using
in silico
approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase (“classic cellulase”) transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in
G. natalis
with
in silico
support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the
G. natalis
GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aquatic crustaceans</subject><subject>Arthropod Proteins - chemistry</subject><subject>Arthropod Proteins - classification</subject><subject>Arthropod Proteins - genetics</subject><subject>Arthropod Proteins - metabolism</subject><subject>Assembly</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brachyura - classification</subject><subject>Brachyura - enzymology</subject><subject>Brachyura - genetics</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrate Metabolism - genetics</subject><subject>Carbohydrates</subject><subject>Cellulase</subject><subject>Cellulase - chemistry</subject><subject>Cellulase - classification</subject><subject>Cellulase - genetics</subject><subject>Cellulase - metabolism</subject><subject>Coding</subject><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Crabs</subject><subject>Crustaceans</subject><subject>Databases, Genetic</subject><subject>Diet</subject><subject>Digestive enzymes</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Freshwater & Marine Ecology</subject><subject>Gene Expression</subject><subject>Gene Ontology</subject><subject>Homology</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - classification</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Leaf litter</subject><subject>Life Sciences</subject><subject>Marine crustaceans</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Midgut</subject><subject>Modelling</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Annotation</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Proteins</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Alignment</subject><subject>Structural Homology, Protein</subject><subject>Sugar</subject><subject>Transcription</subject><subject>Transcriptome</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kVGL1DAUhYso7rr6A3yRgC8rWE3SNkkfh7qOAwuCrj74Um7TWydLm4xJKox_1r9iOjOuKPiUCzn3O-dysuwpo68YpfJ1YJRxkVOm8loVIuf3snNWLgMvxP27mauz7FEItzTtyII-zM54XdcVk-V59vPGgw3am110E-br2fTYk02PNprBaIjGWeIG0oDv3Hbfe4hIVjqa70iu7I_9hIFcNqsv-xdk8G4icYuk2XoT4gSBbMIIticfErLx0L0ka9TgtUsmQCxEGE0giwLIZ5fAg_MHwsbqcQ4n678TvkGfvBfeHCJoBEsW-0BMGty0g5RwCfcxzr3B8Dh7MMAY8Mnpvcg-vb26ad7l1-_Xm2Z1neuyUDHvhCpZJUTZSVVVdScrAVCAFFhLrYeOK5QgdcWVQKYqNoiq5H3X11xVAwpeXGSXR-7Ou28zhthOJmgc0_3o5tByKlRR8qKQSfr8H-mtm71N6Q4qphQ9ANlRpb0LwePQ7ryZwO9bRtul_fbYfpvab5f222Xn2Yk8dxP2dxu_604CfhSE9GW_ov9j_X_qL24EvPo</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Gan, Han Ming</creator><creator>Austin, Christopher</creator><creator>Linton, Stuart</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.F</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8292-7816</orcidid></search><sort><creationdate>20181001</creationdate><title>Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies</title><author>Gan, Han Ming ; Austin, Christopher ; Linton, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b68415664b78559b756aa3a76e97ccfb28e7a7c5286e1851f6542dbd9285fe623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aquatic crustaceans</topic><topic>Arthropod Proteins - chemistry</topic><topic>Arthropod Proteins - classification</topic><topic>Arthropod Proteins - genetics</topic><topic>Arthropod Proteins - metabolism</topic><topic>Assembly</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brachyura - classification</topic><topic>Brachyura - enzymology</topic><topic>Brachyura - genetics</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrate Metabolism - genetics</topic><topic>Carbohydrates</topic><topic>Cellulase</topic><topic>Cellulase - chemistry</topic><topic>Cellulase - classification</topic><topic>Cellulase - genetics</topic><topic>Cellulase - metabolism</topic><topic>Coding</topic><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Crabs</topic><topic>Crustaceans</topic><topic>Databases, Genetic</topic><topic>Diet</topic><topic>Digestive enzymes</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Freshwater & Marine Ecology</topic><topic>Gene Expression</topic><topic>Gene Ontology</topic><topic>Homology</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - classification</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Leaf litter</topic><topic>Life Sciences</topic><topic>Marine crustaceans</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Midgut</topic><topic>Modelling</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Annotation</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Proteins</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Alignment</topic><topic>Structural Homology, Protein</topic><topic>Sugar</topic><topic>Transcription</topic><topic>Transcriptome</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Han Ming</creatorcontrib><creatorcontrib>Austin, Christopher</creatorcontrib><creatorcontrib>Linton, Stuart</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Han Ming</au><au>Austin, Christopher</au><au>Linton, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>20</volume><issue>5</issue><spage>654</spage><epage>665</epage><pages>654-665</pages><issn>1436-2228</issn><eissn>1436-2236</eissn><abstract>The Christmas Island red crab,
Gecarcoidea natalis
, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist,
G. natalis
would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of
G. natalis
, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using
in silico
approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase (“classic cellulase”) transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in
G. natalis
with
in silico
support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the
G. natalis
GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29995174</pmid><doi>10.1007/s10126-018-9836-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8292-7816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-2228 |
ispartof | Marine biotechnology (New York, N.Y.), 2018-10, Vol.20 (5), p.654-665 |
issn | 1436-2228 1436-2236 |
language | eng |
recordid | cdi_proquest_miscellaneous_2068342337 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino Acid Sequence Amino acids Animals Aquatic crustaceans Arthropod Proteins - chemistry Arthropod Proteins - classification Arthropod Proteins - genetics Arthropod Proteins - metabolism Assembly Biomedical and Life Sciences Biotechnology Brachyura - classification Brachyura - enzymology Brachyura - genetics Carbohydrate metabolism Carbohydrate Metabolism - genetics Carbohydrates Cellulase Cellulase - chemistry Cellulase - classification Cellulase - genetics Cellulase - metabolism Coding Comparative analysis Comparative studies Crabs Crustaceans Databases, Genetic Diet Digestive enzymes Engineering Enzymes Freshwater & Marine Ecology Gene Expression Gene Ontology Homology Isoenzymes - chemistry Isoenzymes - classification Isoenzymes - genetics Isoenzymes - metabolism Leaf litter Life Sciences Marine crustaceans Metabolism Microbiology Midgut Modelling Models, Molecular Molecular Sequence Annotation Original Article Phylogeny Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Proteins RNA, Messenger - genetics RNA, Messenger - metabolism Sequence Alignment Structural Homology, Protein Sugar Transcription Transcriptome Zoology |
title | Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome-Guided%20Identification%20of%20Carbohydrate%20Active%20Enzymes%20(CAZy)%20from%20the%20Christmas%20Island%20Red%20Crab,%20Gecarcoidea%20natalis%20and%20a%20Vote%20for%20the%20Inclusion%20of%20Transcriptome-Derived%20Crustacean%20CAZys%20in%20Comparative%20Studies&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Gan,%20Han%20Ming&rft.date=2018-10-01&rft.volume=20&rft.issue=5&rft.spage=654&rft.epage=665&rft.pages=654-665&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-018-9836-2&rft_dat=%3Cproquest_cross%3E2068342337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068188062&rft_id=info:pmid/29995174&rfr_iscdi=true |