Fuzzy-Model-Based Sliding Mode Control of Nonlinear Descriptor Systems
This paper addresses the problem of sliding mode control (SMC) for a type of uncertain time-delay nonlinear descriptor systems represented by T-S fuzzy models. One crucial contributing factor is to put forward a novel integral fuzzy switching manifold involved with time delay. Compared with previous...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2019-09, Vol.49 (9), p.3409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of sliding mode control (SMC) for a type of uncertain time-delay nonlinear descriptor systems represented by T-S fuzzy models. One crucial contributing factor is to put forward a novel integral fuzzy switching manifold involved with time delay. Compared with previous results, the key benefit of the new manifold is that the input matrices via different subsystems are permitted to be diverse, and thus much more applicability will be achieved. By resorting to Frobenius' theorem and double orthogonal complement, the existence condition of the fuzzy manifold is presented. The admissibility conditions of sliding motion with a strictly dissipative performance are further provided. Then, the desired fuzzy SMC controller is synthesized by analyzing the reachability of the manifold. Moreover, an adaptive fuzzy SMC controller is also proposed to adapt the input saturation and the matched uncertainty with unknown upper bounds. The feasibility and virtue of our theoretical findings are demonstrated by a fuzzy SMC controller implementation for a practical system about the pendulum. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2018.2842920 |