Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm

Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-12, Vol.29 (12), p.6264-6275
Hauptverfasser: Chu, Dejun, Lu, Rui, Li, Jin, Yu, Xintong, Zhang, Changshui, Tao, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6275
container_issue 12
container_start_page 6264
container_title IEEE transaction on neural networks and learning systems
container_volume 29
creator Chu, Dejun
Lu, Rui
Li, Jin
Yu, Xintong
Zhang, Changshui
Tao, Qing
description Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.
doi_str_mv 10.1109/TNNLS.2018.2826039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068341818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137587599</sourcerecordid><originalsourceid>FETCH-LOGICAL-p842-5903263dd20ca1d4d8f5ae2110583fe52ea49b62c1571a411e2818940d789e1a3</originalsourceid><addsrcrecordid>eNpdkEtPwzAQhC0EolXpH-CAInHhkmKvH7EvSFXFS-rj0Ahxi9zEbV0lcYgTEPx6LFE4MJedw7er2UHokuAJIVjdpsvlfD0BTOQEJAhM1QkaAhEQA5Xy9M8nrwM09v6AgwTmgqlzNAClFOMMhuhu1XS2sl-23kWpa-Jo0ZedzUvtfbR-WUTvVkdrU1lfOdfto6X56FwdTcuda223ry7Q2VaX3oyPc4TSh_t09hTPV4_Ps-k8biSDmCtMQdCiAJxrUrBCbrk2EP7gkm4NB6OZ2gjICU-IZoQYkEQqhotEKkM0HaGbn7NN695647ssJMpNWerauN5ngIWkjISlgF7_Qw-ub-sQLgNCEy4TrlSgro5Uv6lMkTWtrXT7mf0WQ78BX2Fj2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137587599</pqid></control><display><type>article</type><title>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</title><source>IEEE Xplore</source><creator>Chu, Dejun ; Lu, Rui ; Li, Jin ; Yu, Xintong ; Zhang, Changshui ; Tao, Qing</creator><creatorcontrib>Chu, Dejun ; Lu, Rui ; Li, Jin ; Yu, Xintong ; Zhang, Changshui ; Tao, Qing</creatorcontrib><description>Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2826039</identifier><identifier>PMID: 29994542</identifier><language>eng</language><publisher>United States: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Ascent ; Optimization ; State of the art ; Stochasticity ; Support vector machines ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-12, Vol.29 (12), p.6264-6275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Dejun</creatorcontrib><creatorcontrib>Lu, Rui</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Yu, Xintong</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><creatorcontrib>Tao, Qing</creatorcontrib><title>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.</description><subject>Algorithms</subject><subject>Ascent</subject><subject>Optimization</subject><subject>State of the art</subject><subject>Stochasticity</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtPwzAQhC0EolXpH-CAInHhkmKvH7EvSFXFS-rj0Ahxi9zEbV0lcYgTEPx6LFE4MJedw7er2UHokuAJIVjdpsvlfD0BTOQEJAhM1QkaAhEQA5Xy9M8nrwM09v6AgwTmgqlzNAClFOMMhuhu1XS2sl-23kWpa-Jo0ZedzUvtfbR-WUTvVkdrU1lfOdfto6X56FwdTcuda223ry7Q2VaX3oyPc4TSh_t09hTPV4_Ps-k8biSDmCtMQdCiAJxrUrBCbrk2EP7gkm4NB6OZ2gjICU-IZoQYkEQqhotEKkM0HaGbn7NN695647ssJMpNWerauN5ngIWkjISlgF7_Qw-ub-sQLgNCEy4TrlSgro5Uv6lMkTWtrXT7mf0WQ78BX2Fj2Q</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Chu, Dejun</creator><creator>Lu, Rui</creator><creator>Li, Jin</creator><creator>Yu, Xintong</creator><creator>Zhang, Changshui</creator><creator>Tao, Qing</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</title><author>Chu, Dejun ; Lu, Rui ; Li, Jin ; Yu, Xintong ; Zhang, Changshui ; Tao, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p842-5903263dd20ca1d4d8f5ae2110583fe52ea49b62c1571a411e2818940d789e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Ascent</topic><topic>Optimization</topic><topic>State of the art</topic><topic>Stochasticity</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Dejun</creatorcontrib><creatorcontrib>Lu, Rui</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Yu, Xintong</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><creatorcontrib>Tao, Qing</creatorcontrib><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Dejun</au><au>Lu, Rui</au><au>Li, Jin</au><au>Yu, Xintong</au><au>Zhang, Changshui</au><au>Tao, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-12</date><risdate>2018</risdate><volume>29</volume><issue>12</issue><spage>6264</spage><epage>6275</epage><pages>6264-6275</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><abstract>Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.</abstract><cop>United States</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><pmid>29994542</pmid><doi>10.1109/TNNLS.2018.2826039</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2018-12, Vol.29 (12), p.6264-6275
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2068341818
source IEEE Xplore
subjects Algorithms
Ascent
Optimization
State of the art
Stochasticity
Support vector machines
Training
title Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Top-%20Multiclass%20SVM%20via%20Semismooth%20Newton%20Algorithm&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chu,%20Dejun&rft.date=2018-12&rft.volume=29&rft.issue=12&rft.spage=6264&rft.epage=6275&rft.pages=6264-6275&rft.issn=2162-237X&rft.eissn=2162-2388&rft_id=info:doi/10.1109/TNNLS.2018.2826039&rft_dat=%3Cproquest_pubme%3E2137587599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137587599&rft_id=info:pmid/29994542&rfr_iscdi=true