Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm
Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordi...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2018-12, Vol.29 (12), p.6264-6275 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6275 |
---|---|
container_issue | 12 |
container_start_page | 6264 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 29 |
creator | Chu, Dejun Lu, Rui Li, Jin Yu, Xintong Zhang, Changshui Tao, Qing |
description | Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time. |
doi_str_mv | 10.1109/TNNLS.2018.2826039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068341818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137587599</sourcerecordid><originalsourceid>FETCH-LOGICAL-p842-5903263dd20ca1d4d8f5ae2110583fe52ea49b62c1571a411e2818940d789e1a3</originalsourceid><addsrcrecordid>eNpdkEtPwzAQhC0EolXpH-CAInHhkmKvH7EvSFXFS-rj0Ahxi9zEbV0lcYgTEPx6LFE4MJedw7er2UHokuAJIVjdpsvlfD0BTOQEJAhM1QkaAhEQA5Xy9M8nrwM09v6AgwTmgqlzNAClFOMMhuhu1XS2sl-23kWpa-Jo0ZedzUvtfbR-WUTvVkdrU1lfOdfto6X56FwdTcuda223ry7Q2VaX3oyPc4TSh_t09hTPV4_Ps-k8biSDmCtMQdCiAJxrUrBCbrk2EP7gkm4NB6OZ2gjICU-IZoQYkEQqhotEKkM0HaGbn7NN695647ssJMpNWerauN5ngIWkjISlgF7_Qw-ub-sQLgNCEy4TrlSgro5Uv6lMkTWtrXT7mf0WQ78BX2Fj2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137587599</pqid></control><display><type>article</type><title>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</title><source>IEEE Xplore</source><creator>Chu, Dejun ; Lu, Rui ; Li, Jin ; Yu, Xintong ; Zhang, Changshui ; Tao, Qing</creator><creatorcontrib>Chu, Dejun ; Lu, Rui ; Li, Jin ; Yu, Xintong ; Zhang, Changshui ; Tao, Qing</creatorcontrib><description>Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2826039</identifier><identifier>PMID: 29994542</identifier><language>eng</language><publisher>United States: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Ascent ; Optimization ; State of the art ; Stochasticity ; Support vector machines ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-12, Vol.29 (12), p.6264-6275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Dejun</creatorcontrib><creatorcontrib>Lu, Rui</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Yu, Xintong</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><creatorcontrib>Tao, Qing</creatorcontrib><title>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.</description><subject>Algorithms</subject><subject>Ascent</subject><subject>Optimization</subject><subject>State of the art</subject><subject>Stochasticity</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtPwzAQhC0EolXpH-CAInHhkmKvH7EvSFXFS-rj0Ahxi9zEbV0lcYgTEPx6LFE4MJedw7er2UHokuAJIVjdpsvlfD0BTOQEJAhM1QkaAhEQA5Xy9M8nrwM09v6AgwTmgqlzNAClFOMMhuhu1XS2sl-23kWpa-Jo0ZedzUvtfbR-WUTvVkdrU1lfOdfto6X56FwdTcuda223ry7Q2VaX3oyPc4TSh_t09hTPV4_Ps-k8biSDmCtMQdCiAJxrUrBCbrk2EP7gkm4NB6OZ2gjICU-IZoQYkEQqhotEKkM0HaGbn7NN695647ssJMpNWerauN5ngIWkjISlgF7_Qw-ub-sQLgNCEy4TrlSgro5Uv6lMkTWtrXT7mf0WQ78BX2Fj2Q</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Chu, Dejun</creator><creator>Lu, Rui</creator><creator>Li, Jin</creator><creator>Yu, Xintong</creator><creator>Zhang, Changshui</creator><creator>Tao, Qing</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</title><author>Chu, Dejun ; Lu, Rui ; Li, Jin ; Yu, Xintong ; Zhang, Changshui ; Tao, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p842-5903263dd20ca1d4d8f5ae2110583fe52ea49b62c1571a411e2818940d789e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Ascent</topic><topic>Optimization</topic><topic>State of the art</topic><topic>Stochasticity</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Dejun</creatorcontrib><creatorcontrib>Lu, Rui</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Yu, Xintong</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><creatorcontrib>Tao, Qing</creatorcontrib><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Dejun</au><au>Lu, Rui</au><au>Li, Jin</au><au>Yu, Xintong</au><au>Zhang, Changshui</au><au>Tao, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-12</date><risdate>2018</risdate><volume>29</volume><issue>12</issue><spage>6264</spage><epage>6275</epage><pages>6264-6275</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><abstract>Top- performance has recently received increasing attention in large data categories. Advances, like a top- multiclass support vector machine (SVM), have consistently improved the top- accuracy. However, the key ingredient in the state-of-the-art optimization scheme based upon stochastic dual coordinate ascent relies on the sorting method, which yields complexity. In this paper, we leverage the semismoothness of the problem and propose an optimized top- multiclass SVM algorithm, which employs semismooth Newton algorithm for the key building block to improve the training speed. Our method enjoys a local superlinear convergence rate in theory. In practice, experimental results confirm the validity. Our algorithm is four times faster than the existing method in large synthetic problems; Moreover, on real-world data sets it also shows significant improvement in training time.</abstract><cop>United States</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><pmid>29994542</pmid><doi>10.1109/TNNLS.2018.2826039</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2018-12, Vol.29 (12), p.6264-6275 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2068341818 |
source | IEEE Xplore |
subjects | Algorithms Ascent Optimization State of the art Stochasticity Support vector machines Training |
title | Optimizing Top- Multiclass SVM via Semismooth Newton Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Top-%20Multiclass%20SVM%20via%20Semismooth%20Newton%20Algorithm&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chu,%20Dejun&rft.date=2018-12&rft.volume=29&rft.issue=12&rft.spage=6264&rft.epage=6275&rft.pages=6264-6275&rft.issn=2162-237X&rft.eissn=2162-2388&rft_id=info:doi/10.1109/TNNLS.2018.2826039&rft_dat=%3Cproquest_pubme%3E2137587599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137587599&rft_id=info:pmid/29994542&rfr_iscdi=true |