Salient Object Detection with Recurrent Fully Convolutional Networks

Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2019-07, Vol.41 (7), p.1734-1746
Hauptverfasser: Wang, Linzhao, Wang, Lijun, Lu, Huchuan, Zhang, Pingping, Ruan, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue 7
container_start_page 1734
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 41
creator Wang, Linzhao
Wang, Lijun
Lu, Huchuan
Zhang, Pingping
Ruan, Xiang
description Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared with existing deep network based methods, the proposed network is able to incorpor- ate saliency prior knowledge for more accurate inference. In addition, the recurrent architecture enables our method to automatically learn to refine the saliency map by iteratively correcting its previous errors, yielding more reliable final predictions. To train such a netw- ork with numerous parameters, we propose a pre-training strategy using semantic segmentation data, which simultaneously leverages the strong supervision of segmentation tasks for effective training and enables the network to capture generic representations to chara- cterize category-agnostic objects for saliency detection. Extensive experimental evaluations demonstrate that the proposed method compares favorably against state-of-the-art saliency detection approaches. Additional validations are also performed to study the impact of the recurrent architecture and pre-training strategy on both saliency detection and semantic segmentation, which provides important knowledge for network design and training in the future research.
doi_str_mv 10.1109/TPAMI.2018.2846598
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068339013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8382302</ieee_id><sourcerecordid>2237682638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6142020acb6bc9e30b1032b6e82ac3134d8fdf9d064ce871535b3bd1df811b3c3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EgvL4AZBQJDZsUjyexLWXqOVRCSiCso5iZyJS0gTsBMTfk9DSBatZ3HOvRoexY-BDAK4v5o-X99Oh4KCGQkUy1mqLDUCjDjFGvc0GHKQIlRJqj-17v-AcopjjLtsTWutIRKMBmzynZUFVE8zMgmwTTKjpTlFXwVfRvAZPZFvn-vy6LcvvYFxXn3XZ9kBaBg_UfNXuzR-ynTwtPR2t7wF7ub6aj2_Du9nNdHx5F1qMoQklRIILnlojjdWE3ABHYSQpkVoEjDKVZ7nOuIwsqRHEGBs0GWS5AjBo8YCdr3bfXf3Rkm-SZeEtlWVaUd36RHCpEDUH7NCzf-iibl33dEcJHEklJKqOEivKutp7R3ny7opl6r4T4EnvOPl1nPSOk7XjrnS6nm7NkrJN5U9qB5ysgIKINrFCJZAL_AE0tX-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237682638</pqid></control><display><type>article</type><title>Salient Object Detection with Recurrent Fully Convolutional Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Linzhao ; Wang, Lijun ; Lu, Huchuan ; Zhang, Pingping ; Ruan, Xiang</creator><creatorcontrib>Wang, Linzhao ; Wang, Lijun ; Lu, Huchuan ; Zhang, Pingping ; Ruan, Xiang</creatorcontrib><description>Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared with existing deep network based methods, the proposed network is able to incorpor- ate saliency prior knowledge for more accurate inference. In addition, the recurrent architecture enables our method to automatically learn to refine the saliency map by iteratively correcting its previous errors, yielding more reliable final predictions. To train such a netw- ork with numerous parameters, we propose a pre-training strategy using semantic segmentation data, which simultaneously leverages the strong supervision of segmentation tasks for effective training and enables the network to capture generic representations to chara- cterize category-agnostic objects for saliency detection. Extensive experimental evaluations demonstrate that the proposed method compares favorably against state-of-the-art saliency detection approaches. Additional validations are also performed to study the impact of the recurrent architecture and pre-training strategy on both saliency detection and semantic segmentation, which provides important knowledge for network design and training in the future research.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2018.2846598</identifier><identifier>PMID: 29994247</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Architecture ; Computer architecture ; Image segmentation ; Knowledge management ; network pre-training ; Networks ; Object detection ; Object recognition ; recurrent fully convolutional networks ; Salience ; Saliency detection ; saliency priors ; Salient object detection ; Semantic segmentation ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2019-07, Vol.41 (7), p.1734-1746</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6142020acb6bc9e30b1032b6e82ac3134d8fdf9d064ce871535b3bd1df811b3c3</citedby><cites>FETCH-LOGICAL-c351t-6142020acb6bc9e30b1032b6e82ac3134d8fdf9d064ce871535b3bd1df811b3c3</cites><orcidid>0000-0003-4500-7516 ; 0000-0003-3162-1929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8382302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8382302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Linzhao</creatorcontrib><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><creatorcontrib>Zhang, Pingping</creatorcontrib><creatorcontrib>Ruan, Xiang</creatorcontrib><title>Salient Object Detection with Recurrent Fully Convolutional Networks</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared with existing deep network based methods, the proposed network is able to incorpor- ate saliency prior knowledge for more accurate inference. In addition, the recurrent architecture enables our method to automatically learn to refine the saliency map by iteratively correcting its previous errors, yielding more reliable final predictions. To train such a netw- ork with numerous parameters, we propose a pre-training strategy using semantic segmentation data, which simultaneously leverages the strong supervision of segmentation tasks for effective training and enables the network to capture generic representations to chara- cterize category-agnostic objects for saliency detection. Extensive experimental evaluations demonstrate that the proposed method compares favorably against state-of-the-art saliency detection approaches. Additional validations are also performed to study the impact of the recurrent architecture and pre-training strategy on both saliency detection and semantic segmentation, which provides important knowledge for network design and training in the future research.</description><subject>Architecture</subject><subject>Computer architecture</subject><subject>Image segmentation</subject><subject>Knowledge management</subject><subject>network pre-training</subject><subject>Networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>recurrent fully convolutional networks</subject><subject>Salience</subject><subject>Saliency detection</subject><subject>saliency priors</subject><subject>Salient object detection</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EgvL4AZBQJDZsUjyexLWXqOVRCSiCso5iZyJS0gTsBMTfk9DSBatZ3HOvRoexY-BDAK4v5o-X99Oh4KCGQkUy1mqLDUCjDjFGvc0GHKQIlRJqj-17v-AcopjjLtsTWutIRKMBmzynZUFVE8zMgmwTTKjpTlFXwVfRvAZPZFvn-vy6LcvvYFxXn3XZ9kBaBg_UfNXuzR-ynTwtPR2t7wF7ub6aj2_Du9nNdHx5F1qMoQklRIILnlojjdWE3ABHYSQpkVoEjDKVZ7nOuIwsqRHEGBs0GWS5AjBo8YCdr3bfXf3Rkm-SZeEtlWVaUd36RHCpEDUH7NCzf-iibl33dEcJHEklJKqOEivKutp7R3ny7opl6r4T4EnvOPl1nPSOk7XjrnS6nm7NkrJN5U9qB5ysgIKINrFCJZAL_AE0tX-I</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Linzhao</creator><creator>Wang, Lijun</creator><creator>Lu, Huchuan</creator><creator>Zhang, Pingping</creator><creator>Ruan, Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4500-7516</orcidid><orcidid>https://orcid.org/0000-0003-3162-1929</orcidid></search><sort><creationdate>20190701</creationdate><title>Salient Object Detection with Recurrent Fully Convolutional Networks</title><author>Wang, Linzhao ; Wang, Lijun ; Lu, Huchuan ; Zhang, Pingping ; Ruan, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6142020acb6bc9e30b1032b6e82ac3134d8fdf9d064ce871535b3bd1df811b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Computer architecture</topic><topic>Image segmentation</topic><topic>Knowledge management</topic><topic>network pre-training</topic><topic>Networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>recurrent fully convolutional networks</topic><topic>Salience</topic><topic>Saliency detection</topic><topic>saliency priors</topic><topic>Salient object detection</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Linzhao</creatorcontrib><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><creatorcontrib>Zhang, Pingping</creatorcontrib><creatorcontrib>Ruan, Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Linzhao</au><au>Wang, Lijun</au><au>Lu, Huchuan</au><au>Zhang, Pingping</au><au>Ruan, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salient Object Detection with Recurrent Fully Convolutional Networks</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>41</volume><issue>7</issue><spage>1734</spage><epage>1746</epage><pages>1734-1746</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Deep networks have been proved to encode high-level features with semantic meaning and delivered superior performance in salient object detection. In this paper, we take one step further by developing a new saliency detection method based on recurrent fully convolutional networks (RFCNs). Compared with existing deep network based methods, the proposed network is able to incorpor- ate saliency prior knowledge for more accurate inference. In addition, the recurrent architecture enables our method to automatically learn to refine the saliency map by iteratively correcting its previous errors, yielding more reliable final predictions. To train such a netw- ork with numerous parameters, we propose a pre-training strategy using semantic segmentation data, which simultaneously leverages the strong supervision of segmentation tasks for effective training and enables the network to capture generic representations to chara- cterize category-agnostic objects for saliency detection. Extensive experimental evaluations demonstrate that the proposed method compares favorably against state-of-the-art saliency detection approaches. Additional validations are also performed to study the impact of the recurrent architecture and pre-training strategy on both saliency detection and semantic segmentation, which provides important knowledge for network design and training in the future research.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994247</pmid><doi>10.1109/TPAMI.2018.2846598</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4500-7516</orcidid><orcidid>https://orcid.org/0000-0003-3162-1929</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2019-07, Vol.41 (7), p.1734-1746
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_2068339013
source IEEE Electronic Library (IEL)
subjects Architecture
Computer architecture
Image segmentation
Knowledge management
network pre-training
Networks
Object detection
Object recognition
recurrent fully convolutional networks
Salience
Saliency detection
saliency priors
Salient object detection
Semantic segmentation
Semantics
Task analysis
Training
title Salient Object Detection with Recurrent Fully Convolutional Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salient%20Object%20Detection%20with%20Recurrent%20Fully%20Convolutional%20Networks&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wang,%20Linzhao&rft.date=2019-07-01&rft.volume=41&rft.issue=7&rft.spage=1734&rft.epage=1746&rft.pages=1734-1746&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2018.2846598&rft_dat=%3Cproquest_RIE%3E2237682638%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237682638&rft_id=info:pmid/29994247&rft_ieee_id=8382302&rfr_iscdi=true