Bias-Dependent Normal and Inverted J–V Hysteresis in Perovskite Solar Cells

Perovskite solar cells (PSCs) typically exhibit hysteresis in current density–voltage (J–V) measurements. The most common type of J–V hysteresis in PSCs is normal hysteresis, in which the performance in the reverse scan is better than that in the forward scan. However, inverted hysteresis also exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-08, Vol.10 (30), p.25604-25613
Hauptverfasser: Wu, Fan, Bahrami, Behzad, Chen, Ke, Mabrouk, Sally, Pathak, Rajesh, Tong, Yanhua, Li, Xiaoyi, Zhang, Tiansheng, Jian, Ronghua, Qiao, Qiquan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25613
container_issue 30
container_start_page 25604
container_title ACS applied materials & interfaces
container_volume 10
creator Wu, Fan
Bahrami, Behzad
Chen, Ke
Mabrouk, Sally
Pathak, Rajesh
Tong, Yanhua
Li, Xiaoyi
Zhang, Tiansheng
Jian, Ronghua
Qiao, Qiquan
description Perovskite solar cells (PSCs) typically exhibit hysteresis in current density–voltage (J–V) measurements. The most common type of J–V hysteresis in PSCs is normal hysteresis, in which the performance in the reverse scan is better than that in the forward scan. However, inverted hysteresis also exists, in which the reverse scan performance is worse than in the forward scan; this hysteresis, however, is significantly less well studied. In this work, we show that the hysteresis decreases when the sweep rate is decreased only in cases involving a small bias range, and it does not decrease with a large bias range. Under large forward bias and slowing sweep rate, we observe enhanced normal hysteresis or inverted hysteresis in PSCs. Moreover, the degree of normal and inverted hysteresis can be adjusted by varying the bias. Here, we hypothesize that the tunable hysteresis is derived from the different distribution of ionic defects (VI and VMA) at the electron (hole) transport layer/perovskite interface due to ionic movement in the perovskite layer under the different bias scanning conditions. This conclusion is confirmed using Kelvin probe force microscopy with different bias voltages and scanning rates, which shows surface potential hysteresis based on ionic-migration-related Fermi level shifting in perovskite films and agrees with the tunable J–V hysteresis hypothesis. Moreover, the increased time response in the milliseconds region in open-circuit voltage decay after J–V scanning further corroborates the mechanism of ionic migration under bias. Our work provides new insights into the ionic movement hypothesis for the J–V hysteresis in PSCs.
doi_str_mv 10.1021/acsami.8b07298
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2067892542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067892542</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b38e7298283fde3f8f7964d543f69406ab18ad4238ceb077c51d12235b7ebace3</originalsourceid><addsrcrecordid>eNp1kElPwzAUhC0EoqVw5Yh8REgp3pI4RyhLi8oisVwtJ36RUrIUO6nUG_-Bf8gvwVUKN07vHWZGMx9Cx5SMKWH0XGdOV8VYpiRmidxBQ5oIEUgWst2_X4gBOnBuQUjEGQn30YAliYwoj4fo_rLQLriCJdQG6hY_NLbSJda1wbN6BbYFg---P7_e8HTtWrDgCoeLGj-BbVbuvWgBPzeltngCZekO0V6uSwdH2ztCrzfXL5NpMH-8nU0u5oHmnLRByiVs6jLJcwM8l3mcRMKEgudRIkikUyq1EYzLDPywOAupoYzxMI0h1RnwETrtc5e2-ejAtaoqXOYb6BqazilGolgmLPQRIzTupZltnLOQq6UtKm3XihK1Qah6hGqL0BtOttldWoH5k_8y84KzXuCNatF0tvZT_0v7ATfne_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067892542</pqid></control><display><type>article</type><title>Bias-Dependent Normal and Inverted J–V Hysteresis in Perovskite Solar Cells</title><source>American Chemical Society Journals</source><creator>Wu, Fan ; Bahrami, Behzad ; Chen, Ke ; Mabrouk, Sally ; Pathak, Rajesh ; Tong, Yanhua ; Li, Xiaoyi ; Zhang, Tiansheng ; Jian, Ronghua ; Qiao, Qiquan</creator><creatorcontrib>Wu, Fan ; Bahrami, Behzad ; Chen, Ke ; Mabrouk, Sally ; Pathak, Rajesh ; Tong, Yanhua ; Li, Xiaoyi ; Zhang, Tiansheng ; Jian, Ronghua ; Qiao, Qiquan</creatorcontrib><description>Perovskite solar cells (PSCs) typically exhibit hysteresis in current density–voltage (J–V) measurements. The most common type of J–V hysteresis in PSCs is normal hysteresis, in which the performance in the reverse scan is better than that in the forward scan. However, inverted hysteresis also exists, in which the reverse scan performance is worse than in the forward scan; this hysteresis, however, is significantly less well studied. In this work, we show that the hysteresis decreases when the sweep rate is decreased only in cases involving a small bias range, and it does not decrease with a large bias range. Under large forward bias and slowing sweep rate, we observe enhanced normal hysteresis or inverted hysteresis in PSCs. Moreover, the degree of normal and inverted hysteresis can be adjusted by varying the bias. Here, we hypothesize that the tunable hysteresis is derived from the different distribution of ionic defects (VI and VMA) at the electron (hole) transport layer/perovskite interface due to ionic movement in the perovskite layer under the different bias scanning conditions. This conclusion is confirmed using Kelvin probe force microscopy with different bias voltages and scanning rates, which shows surface potential hysteresis based on ionic-migration-related Fermi level shifting in perovskite films and agrees with the tunable J–V hysteresis hypothesis. Moreover, the increased time response in the milliseconds region in open-circuit voltage decay after J–V scanning further corroborates the mechanism of ionic migration under bias. Our work provides new insights into the ionic movement hypothesis for the J–V hysteresis in PSCs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b07298</identifier><identifier>PMID: 29986137</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-08, Vol.10 (30), p.25604-25613</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b38e7298283fde3f8f7964d543f69406ab18ad4238ceb077c51d12235b7ebace3</citedby><cites>FETCH-LOGICAL-a330t-b38e7298283fde3f8f7964d543f69406ab18ad4238ceb077c51d12235b7ebace3</cites><orcidid>0000-0002-7275-7649 ; 0000-0002-4555-7887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b07298$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b07298$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29986137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Mabrouk, Sally</creatorcontrib><creatorcontrib>Pathak, Rajesh</creatorcontrib><creatorcontrib>Tong, Yanhua</creatorcontrib><creatorcontrib>Li, Xiaoyi</creatorcontrib><creatorcontrib>Zhang, Tiansheng</creatorcontrib><creatorcontrib>Jian, Ronghua</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><title>Bias-Dependent Normal and Inverted J–V Hysteresis in Perovskite Solar Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Perovskite solar cells (PSCs) typically exhibit hysteresis in current density–voltage (J–V) measurements. The most common type of J–V hysteresis in PSCs is normal hysteresis, in which the performance in the reverse scan is better than that in the forward scan. However, inverted hysteresis also exists, in which the reverse scan performance is worse than in the forward scan; this hysteresis, however, is significantly less well studied. In this work, we show that the hysteresis decreases when the sweep rate is decreased only in cases involving a small bias range, and it does not decrease with a large bias range. Under large forward bias and slowing sweep rate, we observe enhanced normal hysteresis or inverted hysteresis in PSCs. Moreover, the degree of normal and inverted hysteresis can be adjusted by varying the bias. Here, we hypothesize that the tunable hysteresis is derived from the different distribution of ionic defects (VI and VMA) at the electron (hole) transport layer/perovskite interface due to ionic movement in the perovskite layer under the different bias scanning conditions. This conclusion is confirmed using Kelvin probe force microscopy with different bias voltages and scanning rates, which shows surface potential hysteresis based on ionic-migration-related Fermi level shifting in perovskite films and agrees with the tunable J–V hysteresis hypothesis. Moreover, the increased time response in the milliseconds region in open-circuit voltage decay after J–V scanning further corroborates the mechanism of ionic migration under bias. Our work provides new insights into the ionic movement hypothesis for the J–V hysteresis in PSCs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAUhC0EoqVw5Yh8REgp3pI4RyhLi8oisVwtJ36RUrIUO6nUG_-Bf8gvwVUKN07vHWZGMx9Cx5SMKWH0XGdOV8VYpiRmidxBQ5oIEUgWst2_X4gBOnBuQUjEGQn30YAliYwoj4fo_rLQLriCJdQG6hY_NLbSJda1wbN6BbYFg---P7_e8HTtWrDgCoeLGj-BbVbuvWgBPzeltngCZekO0V6uSwdH2ztCrzfXL5NpMH-8nU0u5oHmnLRByiVs6jLJcwM8l3mcRMKEgudRIkikUyq1EYzLDPywOAupoYzxMI0h1RnwETrtc5e2-ejAtaoqXOYb6BqazilGolgmLPQRIzTupZltnLOQq6UtKm3XihK1Qah6hGqL0BtOttldWoH5k_8y84KzXuCNatF0tvZT_0v7ATfne_E</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Wu, Fan</creator><creator>Bahrami, Behzad</creator><creator>Chen, Ke</creator><creator>Mabrouk, Sally</creator><creator>Pathak, Rajesh</creator><creator>Tong, Yanhua</creator><creator>Li, Xiaoyi</creator><creator>Zhang, Tiansheng</creator><creator>Jian, Ronghua</creator><creator>Qiao, Qiquan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7275-7649</orcidid><orcidid>https://orcid.org/0000-0002-4555-7887</orcidid></search><sort><creationdate>20180801</creationdate><title>Bias-Dependent Normal and Inverted J–V Hysteresis in Perovskite Solar Cells</title><author>Wu, Fan ; Bahrami, Behzad ; Chen, Ke ; Mabrouk, Sally ; Pathak, Rajesh ; Tong, Yanhua ; Li, Xiaoyi ; Zhang, Tiansheng ; Jian, Ronghua ; Qiao, Qiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b38e7298283fde3f8f7964d543f69406ab18ad4238ceb077c51d12235b7ebace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Mabrouk, Sally</creatorcontrib><creatorcontrib>Pathak, Rajesh</creatorcontrib><creatorcontrib>Tong, Yanhua</creatorcontrib><creatorcontrib>Li, Xiaoyi</creatorcontrib><creatorcontrib>Zhang, Tiansheng</creatorcontrib><creatorcontrib>Jian, Ronghua</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fan</au><au>Bahrami, Behzad</au><au>Chen, Ke</au><au>Mabrouk, Sally</au><au>Pathak, Rajesh</au><au>Tong, Yanhua</au><au>Li, Xiaoyi</au><au>Zhang, Tiansheng</au><au>Jian, Ronghua</au><au>Qiao, Qiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias-Dependent Normal and Inverted J–V Hysteresis in Perovskite Solar Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>10</volume><issue>30</issue><spage>25604</spage><epage>25613</epage><pages>25604-25613</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Perovskite solar cells (PSCs) typically exhibit hysteresis in current density–voltage (J–V) measurements. The most common type of J–V hysteresis in PSCs is normal hysteresis, in which the performance in the reverse scan is better than that in the forward scan. However, inverted hysteresis also exists, in which the reverse scan performance is worse than in the forward scan; this hysteresis, however, is significantly less well studied. In this work, we show that the hysteresis decreases when the sweep rate is decreased only in cases involving a small bias range, and it does not decrease with a large bias range. Under large forward bias and slowing sweep rate, we observe enhanced normal hysteresis or inverted hysteresis in PSCs. Moreover, the degree of normal and inverted hysteresis can be adjusted by varying the bias. Here, we hypothesize that the tunable hysteresis is derived from the different distribution of ionic defects (VI and VMA) at the electron (hole) transport layer/perovskite interface due to ionic movement in the perovskite layer under the different bias scanning conditions. This conclusion is confirmed using Kelvin probe force microscopy with different bias voltages and scanning rates, which shows surface potential hysteresis based on ionic-migration-related Fermi level shifting in perovskite films and agrees with the tunable J–V hysteresis hypothesis. Moreover, the increased time response in the milliseconds region in open-circuit voltage decay after J–V scanning further corroborates the mechanism of ionic migration under bias. Our work provides new insights into the ionic movement hypothesis for the J–V hysteresis in PSCs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29986137</pmid><doi>10.1021/acsami.8b07298</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7275-7649</orcidid><orcidid>https://orcid.org/0000-0002-4555-7887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-08, Vol.10 (30), p.25604-25613
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2067892542
source American Chemical Society Journals
title Bias-Dependent Normal and Inverted J–V Hysteresis in Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias-Dependent%20Normal%20and%20Inverted%20J%E2%80%93V%20Hysteresis%20in%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Fan&rft.date=2018-08-01&rft.volume=10&rft.issue=30&rft.spage=25604&rft.epage=25613&rft.pages=25604-25613&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b07298&rft_dat=%3Cproquest_cross%3E2067892542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067892542&rft_id=info:pmid/29986137&rfr_iscdi=true