Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species

Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to link the genetic effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2018-10, Vol.220 (1), p.332-346
Hauptverfasser: Chen, Jing, Zhang, Fengjun, Wang, Lin, Leach, Lindsey, Luo, Zewei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 1
container_start_page 332
container_title The New phytologist
container_volume 220
creator Chen, Jing
Zhang, Fengjun
Wang, Lin
Leach, Lindsey
Luo, Zewei
description Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to link the genetic effects of genes or genotypes at quantitative trait loci (QTL) to the phenotype of quantitative traits. We present a statistically tractable quantitative genetic model for autotetraploids based on orthogonal contrast comparisons in the general linear model. The new methods are suitable for autotetraploid species with any population genetic structure and take full account of the essential features of autotetrasomic inheritance. The statistical properties of the new methods are explored and compared to an alternative method in the literature by simulation studies. We have shown how these methods can be applied for quantitative genetic analysis in autotetraploids by analysing trait phenotype data from an autotetraploid potato segregating population. Using trait segregation analysis, we showed that both highly heritable traits of flowering time and plant height were under the control of major QTL. The orthogonal model directly dissects genetic variance into independent components and gives consistent estimates of genetic effects provided that tetrasomic gene segregation is considered.
doi_str_mv 10.1111/nph.15284
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2067886853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90024555</jstor_id><sourcerecordid>90024555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-caffd78022892cc60e5a6e6833132530bfb727822ba717621cf88366c2182bd73</originalsourceid><addsrcrecordid>eNp1kE1LHDEch4MoutUe_ABKoJf2MGteJi9zLNJ2BVEPFnooDJnMfzTL7GRMMsp--8auuwfBXHJ5fg_Jg9ApJXOaz8UwPs6pYLrcQzNayqrQlKt9NCOE6UKW8s8R-hTjkhBSCckO0RGrKq20Kmfo721Ij_7BD6bH1g8pmJhwYyK0eOVb6CPufMBPkxmSSya5Z8APMEByFpu8WUcXsRuwmZJPkNdj712L4wjWQTxBB53pI3x-u4_R758_7i8XxfXtr6vL79eFLSkpC2u6rlWaMKYrZq0kIIwEqTmnnAlOmq5RTGnGGqOokozaTmsupWVUs6ZV_Bh93XjH4J8miKleuWih780Afoo1I1JpLbXgGf3yDl36KeSfvFKVyPocLVPfNpQNPsYAXT0GtzJhXVNSvyavc_L6f_LMnr8Zp2YF7Y7cNs7AxQZ4cT2sPzbVN3eLrfJss1jG5MNuUeWnlUII_g-dI5R-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095176002</pqid></control><display><type>article</type><title>Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Jing ; Zhang, Fengjun ; Wang, Lin ; Leach, Lindsey ; Luo, Zewei</creator><creatorcontrib>Chen, Jing ; Zhang, Fengjun ; Wang, Lin ; Leach, Lindsey ; Luo, Zewei</creatorcontrib><description>Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to link the genetic effects of genes or genotypes at quantitative trait loci (QTL) to the phenotype of quantitative traits. We present a statistically tractable quantitative genetic model for autotetraploids based on orthogonal contrast comparisons in the general linear model. The new methods are suitable for autotetraploid species with any population genetic structure and take full account of the essential features of autotetrasomic inheritance. The statistical properties of the new methods are explored and compared to an alternative method in the literature by simulation studies. We have shown how these methods can be applied for quantitative genetic analysis in autotetraploids by analysing trait phenotype data from an autotetraploid potato segregating population. Using trait segregation analysis, we showed that both highly heritable traits of flowering time and plant height were under the control of major QTL. The orthogonal model directly dissects genetic variance into independent components and gives consistent estimates of genetic effects provided that tetrasomic gene segregation is considered.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15284</identifier><identifier>PMID: 29987874</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Autotetraploid ; autotetraploids ; Coffee ; Computer simulation ; Data processing ; double reduction ; Flowering ; Gene loci ; Genetic analysis ; Genetic diversity ; Genetic effects ; Genetic structure ; Genetic variance ; Genotype &amp; phenotype ; Genotypes ; Heredity ; Methods ; orthogonal contrasts ; Phenotypes ; Plant breeding ; polyploid ; Polyploidy ; Population (statistical) ; Population genetics ; potato ; Potatoes ; quantitative genetic model ; Quantitative genetics ; Quantitative trait loci ; Species ; tetrasomic inheritance</subject><ispartof>The New phytologist, 2018-10, Vol.220 (1), p.332-346</ispartof><rights>2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2018 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-caffd78022892cc60e5a6e6833132530bfb727822ba717621cf88366c2182bd73</citedby><cites>FETCH-LOGICAL-c4104-caffd78022892cc60e5a6e6833132530bfb727822ba717621cf88366c2182bd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90024555$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90024555$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29987874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhang, Fengjun</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Leach, Lindsey</creatorcontrib><creatorcontrib>Luo, Zewei</creatorcontrib><title>Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to link the genetic effects of genes or genotypes at quantitative trait loci (QTL) to the phenotype of quantitative traits. We present a statistically tractable quantitative genetic model for autotetraploids based on orthogonal contrast comparisons in the general linear model. The new methods are suitable for autotetraploid species with any population genetic structure and take full account of the essential features of autotetrasomic inheritance. The statistical properties of the new methods are explored and compared to an alternative method in the literature by simulation studies. We have shown how these methods can be applied for quantitative genetic analysis in autotetraploids by analysing trait phenotype data from an autotetraploid potato segregating population. Using trait segregation analysis, we showed that both highly heritable traits of flowering time and plant height were under the control of major QTL. The orthogonal model directly dissects genetic variance into independent components and gives consistent estimates of genetic effects provided that tetrasomic gene segregation is considered.</description><subject>Autotetraploid</subject><subject>autotetraploids</subject><subject>Coffee</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>double reduction</subject><subject>Flowering</subject><subject>Gene loci</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic effects</subject><subject>Genetic structure</subject><subject>Genetic variance</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Heredity</subject><subject>Methods</subject><subject>orthogonal contrasts</subject><subject>Phenotypes</subject><subject>Plant breeding</subject><subject>polyploid</subject><subject>Polyploidy</subject><subject>Population (statistical)</subject><subject>Population genetics</subject><subject>potato</subject><subject>Potatoes</subject><subject>quantitative genetic model</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Species</subject><subject>tetrasomic inheritance</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LHDEch4MoutUe_ABKoJf2MGteJi9zLNJ2BVEPFnooDJnMfzTL7GRMMsp--8auuwfBXHJ5fg_Jg9ApJXOaz8UwPs6pYLrcQzNayqrQlKt9NCOE6UKW8s8R-hTjkhBSCckO0RGrKq20Kmfo721Ij_7BD6bH1g8pmJhwYyK0eOVb6CPufMBPkxmSSya5Z8APMEByFpu8WUcXsRuwmZJPkNdj712L4wjWQTxBB53pI3x-u4_R758_7i8XxfXtr6vL79eFLSkpC2u6rlWaMKYrZq0kIIwEqTmnnAlOmq5RTGnGGqOokozaTmsupWVUs6ZV_Bh93XjH4J8miKleuWih780Afoo1I1JpLbXgGf3yDl36KeSfvFKVyPocLVPfNpQNPsYAXT0GtzJhXVNSvyavc_L6f_LMnr8Zp2YF7Y7cNs7AxQZ4cT2sPzbVN3eLrfJss1jG5MNuUeWnlUII_g-dI5R-</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Chen, Jing</creator><creator>Zhang, Fengjun</creator><creator>Wang, Lin</creator><creator>Leach, Lindsey</creator><creator>Luo, Zewei</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20181001</creationdate><title>Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species</title><author>Chen, Jing ; Zhang, Fengjun ; Wang, Lin ; Leach, Lindsey ; Luo, Zewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-caffd78022892cc60e5a6e6833132530bfb727822ba717621cf88366c2182bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autotetraploid</topic><topic>autotetraploids</topic><topic>Coffee</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>double reduction</topic><topic>Flowering</topic><topic>Gene loci</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic effects</topic><topic>Genetic structure</topic><topic>Genetic variance</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Heredity</topic><topic>Methods</topic><topic>orthogonal contrasts</topic><topic>Phenotypes</topic><topic>Plant breeding</topic><topic>polyploid</topic><topic>Polyploidy</topic><topic>Population (statistical)</topic><topic>Population genetics</topic><topic>potato</topic><topic>Potatoes</topic><topic>quantitative genetic model</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Species</topic><topic>tetrasomic inheritance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhang, Fengjun</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Leach, Lindsey</creatorcontrib><creatorcontrib>Luo, Zewei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jing</au><au>Zhang, Fengjun</au><au>Wang, Lin</au><au>Leach, Lindsey</au><au>Luo, Zewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>220</volume><issue>1</issue><spage>332</spage><epage>346</epage><pages>332-346</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to link the genetic effects of genes or genotypes at quantitative trait loci (QTL) to the phenotype of quantitative traits. We present a statistically tractable quantitative genetic model for autotetraploids based on orthogonal contrast comparisons in the general linear model. The new methods are suitable for autotetraploid species with any population genetic structure and take full account of the essential features of autotetrasomic inheritance. The statistical properties of the new methods are explored and compared to an alternative method in the literature by simulation studies. We have shown how these methods can be applied for quantitative genetic analysis in autotetraploids by analysing trait phenotype data from an autotetraploid potato segregating population. Using trait segregation analysis, we showed that both highly heritable traits of flowering time and plant height were under the control of major QTL. The orthogonal model directly dissects genetic variance into independent components and gives consistent estimates of genetic effects provided that tetrasomic gene segregation is considered.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>29987874</pmid><doi>10.1111/nph.15284</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2018-10, Vol.220 (1), p.332-346
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2067886853
source Wiley Online Library Free Content; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Autotetraploid
autotetraploids
Coffee
Computer simulation
Data processing
double reduction
Flowering
Gene loci
Genetic analysis
Genetic diversity
Genetic effects
Genetic structure
Genetic variance
Genotype & phenotype
Genotypes
Heredity
Methods
orthogonal contrasts
Phenotypes
Plant breeding
polyploid
Polyploidy
Population (statistical)
Population genetics
potato
Potatoes
quantitative genetic model
Quantitative genetics
Quantitative trait loci
Species
tetrasomic inheritance
title Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20contrast%20based%20models%20for%20quantitative%20genetic%20analysis%20in%20autotetraploid%20species&rft.jtitle=The%20New%20phytologist&rft.au=Chen,%20Jing&rft.date=2018-10-01&rft.volume=220&rft.issue=1&rft.spage=332&rft.epage=346&rft.pages=332-346&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15284&rft_dat=%3Cjstor_proqu%3E90024555%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095176002&rft_id=info:pmid/29987874&rft_jstor_id=90024555&rfr_iscdi=true