Monitoring age‐related trends in genomic diversity of Australian lungfish
An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over th...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2018-08, Vol.27 (16), p.3231-3241 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3241 |
---|---|
container_issue | 16 |
container_start_page | 3231 |
container_title | Molecular ecology |
container_volume | 27 |
creator | Schmidt, Daniel J. Fallon, Stewart Roberts, David T. Espinoza, Thomas McDougall, Andrew Brooks, Steven G. Kind, Peter K. Bond, Nick R. Kennard, Mark J. Hughes, Jane M. |
description | An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a “single‐sample” evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long‐lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan. |
doi_str_mv | 10.1111/mec.14791 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2067884549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089773029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4541-418e736414f60eae79797d362aede5f4a011d8c31a2d538f7fe3bfe0f48b3d303</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1rfktgjqrgJEAtIbJEbHxdXiQN2AurGI_CMPAmGFgYkfAYvn_5z9CO0T_CYxDdpoBoTXkiygYaE5VlKJX_YREMsc5oSLNgA7YSwwJgwmmXbaEClFJLKYoiublpnu9ZbN0_UHD7e3j3UqgOddB6cDol1yRxc29gq0fYFfLDdMmlNctKHzqvaKpfUvZsbGx530ZZRdYC99T9C92end9OL9Pr2_HJ6cp1WPOMk5URAwXJOuMkxKChkHM1yqkBDZrjChGhRMaKozpgwhQE2M4ANFzOmGWYjdLTKffLtcw-hKxsbKqhr5aDtQ0lxXggRd8lID__QRdt7F6-LSsiiYJh-qeOVqnwbggdTPnnbKL8sCS6_Gi5jw-V3w9EerBP7WQP6V_5UGsFkBV5tDcv_k8qb0-kq8hPw7IWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089773029</pqid></control><display><type>article</type><title>Monitoring age‐related trends in genomic diversity of Australian lungfish</title><source>Access via Wiley Online Library</source><creator>Schmidt, Daniel J. ; Fallon, Stewart ; Roberts, David T. ; Espinoza, Thomas ; McDougall, Andrew ; Brooks, Steven G. ; Kind, Peter K. ; Bond, Nick R. ; Kennard, Mark J. ; Hughes, Jane M.</creator><creatorcontrib>Schmidt, Daniel J. ; Fallon, Stewart ; Roberts, David T. ; Espinoza, Thomas ; McDougall, Andrew ; Brooks, Steven G. ; Kind, Peter K. ; Bond, Nick R. ; Kennard, Mark J. ; Hughes, Jane M.</creatorcontrib><description>An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a “single‐sample” evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long‐lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14791</identifier><identifier>PMID: 29989297</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Age ; allelic richness ; Biodiversity ; Breeding ; Carbon 14 ; Conservation ; Dating techniques ; Endangered & extinct species ; gene diversity ; Genetic diversity ; Heterozygosity ; Human influences ; identity disequilibrium, inbreeding coefficient ; Inbreeding ; Life span ; Population genetics ; Population number ; Populations ; Radiocarbon dating ; Radiometric dating ; RADseq ; Recruitment ; Risk management ; sequence‐based genotyping ; Single-nucleotide polymorphism ; Species diversity ; standardized multilocus heterozygosity ; Threatened species</subject><ispartof>Molecular ecology, 2018-08, Vol.27 (16), p.3231-3241</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4541-418e736414f60eae79797d362aede5f4a011d8c31a2d538f7fe3bfe0f48b3d303</citedby><cites>FETCH-LOGICAL-c4541-418e736414f60eae79797d362aede5f4a011d8c31a2d538f7fe3bfe0f48b3d303</cites><orcidid>0000-0001-5638-497X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.14791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.14791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Daniel J.</creatorcontrib><creatorcontrib>Fallon, Stewart</creatorcontrib><creatorcontrib>Roberts, David T.</creatorcontrib><creatorcontrib>Espinoza, Thomas</creatorcontrib><creatorcontrib>McDougall, Andrew</creatorcontrib><creatorcontrib>Brooks, Steven G.</creatorcontrib><creatorcontrib>Kind, Peter K.</creatorcontrib><creatorcontrib>Bond, Nick R.</creatorcontrib><creatorcontrib>Kennard, Mark J.</creatorcontrib><creatorcontrib>Hughes, Jane M.</creatorcontrib><title>Monitoring age‐related trends in genomic diversity of Australian lungfish</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a “single‐sample” evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long‐lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.</description><subject>Age</subject><subject>allelic richness</subject><subject>Biodiversity</subject><subject>Breeding</subject><subject>Carbon 14</subject><subject>Conservation</subject><subject>Dating techniques</subject><subject>Endangered & extinct species</subject><subject>gene diversity</subject><subject>Genetic diversity</subject><subject>Heterozygosity</subject><subject>Human influences</subject><subject>identity disequilibrium, inbreeding coefficient</subject><subject>Inbreeding</subject><subject>Life span</subject><subject>Population genetics</subject><subject>Population number</subject><subject>Populations</subject><subject>Radiocarbon dating</subject><subject>Radiometric dating</subject><subject>RADseq</subject><subject>Recruitment</subject><subject>Risk management</subject><subject>sequence‐based genotyping</subject><subject>Single-nucleotide polymorphism</subject><subject>Species diversity</subject><subject>standardized multilocus heterozygosity</subject><subject>Threatened species</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1rfktgjqrgJEAtIbJEbHxdXiQN2AurGI_CMPAmGFgYkfAYvn_5z9CO0T_CYxDdpoBoTXkiygYaE5VlKJX_YREMsc5oSLNgA7YSwwJgwmmXbaEClFJLKYoiublpnu9ZbN0_UHD7e3j3UqgOddB6cDol1yRxc29gq0fYFfLDdMmlNctKHzqvaKpfUvZsbGx530ZZRdYC99T9C92end9OL9Pr2_HJ6cp1WPOMk5URAwXJOuMkxKChkHM1yqkBDZrjChGhRMaKozpgwhQE2M4ANFzOmGWYjdLTKffLtcw-hKxsbKqhr5aDtQ0lxXggRd8lID__QRdt7F6-LSsiiYJh-qeOVqnwbggdTPnnbKL8sCS6_Gi5jw-V3w9EerBP7WQP6V_5UGsFkBV5tDcv_k8qb0-kq8hPw7IWc</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Schmidt, Daniel J.</creator><creator>Fallon, Stewart</creator><creator>Roberts, David T.</creator><creator>Espinoza, Thomas</creator><creator>McDougall, Andrew</creator><creator>Brooks, Steven G.</creator><creator>Kind, Peter K.</creator><creator>Bond, Nick R.</creator><creator>Kennard, Mark J.</creator><creator>Hughes, Jane M.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5638-497X</orcidid></search><sort><creationdate>201808</creationdate><title>Monitoring age‐related trends in genomic diversity of Australian lungfish</title><author>Schmidt, Daniel J. ; Fallon, Stewart ; Roberts, David T. ; Espinoza, Thomas ; McDougall, Andrew ; Brooks, Steven G. ; Kind, Peter K. ; Bond, Nick R. ; Kennard, Mark J. ; Hughes, Jane M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4541-418e736414f60eae79797d362aede5f4a011d8c31a2d538f7fe3bfe0f48b3d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age</topic><topic>allelic richness</topic><topic>Biodiversity</topic><topic>Breeding</topic><topic>Carbon 14</topic><topic>Conservation</topic><topic>Dating techniques</topic><topic>Endangered & extinct species</topic><topic>gene diversity</topic><topic>Genetic diversity</topic><topic>Heterozygosity</topic><topic>Human influences</topic><topic>identity disequilibrium, inbreeding coefficient</topic><topic>Inbreeding</topic><topic>Life span</topic><topic>Population genetics</topic><topic>Population number</topic><topic>Populations</topic><topic>Radiocarbon dating</topic><topic>Radiometric dating</topic><topic>RADseq</topic><topic>Recruitment</topic><topic>Risk management</topic><topic>sequence‐based genotyping</topic><topic>Single-nucleotide polymorphism</topic><topic>Species diversity</topic><topic>standardized multilocus heterozygosity</topic><topic>Threatened species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Daniel J.</creatorcontrib><creatorcontrib>Fallon, Stewart</creatorcontrib><creatorcontrib>Roberts, David T.</creatorcontrib><creatorcontrib>Espinoza, Thomas</creatorcontrib><creatorcontrib>McDougall, Andrew</creatorcontrib><creatorcontrib>Brooks, Steven G.</creatorcontrib><creatorcontrib>Kind, Peter K.</creatorcontrib><creatorcontrib>Bond, Nick R.</creatorcontrib><creatorcontrib>Kennard, Mark J.</creatorcontrib><creatorcontrib>Hughes, Jane M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Daniel J.</au><au>Fallon, Stewart</au><au>Roberts, David T.</au><au>Espinoza, Thomas</au><au>McDougall, Andrew</au><au>Brooks, Steven G.</au><au>Kind, Peter K.</au><au>Bond, Nick R.</au><au>Kennard, Mark J.</au><au>Hughes, Jane M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring age‐related trends in genomic diversity of Australian lungfish</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>16</issue><spage>3231</spage><epage>3241</epage><pages>3231-3241</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a “single‐sample” evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long‐lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29989297</pmid><doi>10.1111/mec.14791</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5638-497X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2018-08, Vol.27 (16), p.3231-3241 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_2067884549 |
source | Access via Wiley Online Library |
subjects | Age allelic richness Biodiversity Breeding Carbon 14 Conservation Dating techniques Endangered & extinct species gene diversity Genetic diversity Heterozygosity Human influences identity disequilibrium, inbreeding coefficient Inbreeding Life span Population genetics Population number Populations Radiocarbon dating Radiometric dating RADseq Recruitment Risk management sequence‐based genotyping Single-nucleotide polymorphism Species diversity standardized multilocus heterozygosity Threatened species |
title | Monitoring age‐related trends in genomic diversity of Australian lungfish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20age%E2%80%90related%20trends%20in%20genomic%20diversity%20of%20Australian%20lungfish&rft.jtitle=Molecular%20ecology&rft.au=Schmidt,%20Daniel%20J.&rft.date=2018-08&rft.volume=27&rft.issue=16&rft.spage=3231&rft.epage=3241&rft.pages=3231-3241&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14791&rft_dat=%3Cproquest_cross%3E2089773029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089773029&rft_id=info:pmid/29989297&rfr_iscdi=true |