Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates

We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2018, Vol.14 (29), p.6090-6101
Hauptverfasser: Chrysinas, P, Pashos, G, Vourdas, N, Kokkoris, G, Stathopoulos, V N, Boudouvis, A G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6101
container_issue 29
container_start_page 6090
container_title Soft matter
container_volume 14
creator Chrysinas, P
Pashos, G
Vourdas, N
Kokkoris, G
Stathopoulos, V N
Boudouvis, A G
description We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.
doi_str_mv 10.1039/c8sm00952j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2067883144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067883144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK1u_AEScCNCdF6Zx1KKTyouVHAXJpMbTUkycWYi-O9NW-3C1T3n8nG49yB0TPAFwUxfWhVajHVGlztoSiTnqVBc7W41e5uggxCWGDPFidhHE6q10oTRKSrmru2HaGLtOtMkdfcFIdbva5-4KjE2DhvTgv0wXR3asNqX3vUNxFF3Se-8G0Jiap_24FswRQNJGIoQvYkQDtFeZZoAR79zhl5vrl_md-ni6fZ-frVILctoTGmJK51JWZGKC9ACa1lqLstScGOZtlZwpQprQBIrSqZBYKmlLoCagtNMshk62-T23n0O4xt5WwcLTWM6GO_LKRZSKUY4H9HTf-jSDX4sYEXJTGIpMjZS5xvKeheChyrvfd0a_50TnK-az-fq-XHd_MMIn_xGDkUL5Rb9q5r9AH_Tf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075707653</pqid></control><display><type>article</type><title>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Chrysinas, P ; Pashos, G ; Vourdas, N ; Kokkoris, G ; Stathopoulos, V N ; Boudouvis, A G</creator><creatorcontrib>Chrysinas, P ; Pashos, G ; Vourdas, N ; Kokkoris, G ; Stathopoulos, V N ; Boudouvis, A G</creatorcontrib><description>We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm00952j</identifier><identifier>PMID: 29989132</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuation ; Air pockets ; Case studies ; Coalescing ; Computation ; Computer applications ; Continuity equation ; Dependence ; Droplets ; Flow rates ; Flow velocity ; Forming ; Free surfaces ; Inclination ; Mathematical models ; Momentum transfer ; Substrates ; Water drops</subject><ispartof>Soft matter, 2018, Vol.14 (29), p.6090-6101</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</citedby><cites>FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</cites><orcidid>0000-0002-2080-4909 ; 0000-0003-4507-7311 ; 0000-0001-8575-2313 ; 0000-0001-6651-7318 ; 0000-0002-8343-8619 ; 0000-0002-6425-665X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,27930,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chrysinas, P</creatorcontrib><creatorcontrib>Pashos, G</creatorcontrib><creatorcontrib>Vourdas, N</creatorcontrib><creatorcontrib>Kokkoris, G</creatorcontrib><creatorcontrib>Stathopoulos, V N</creatorcontrib><creatorcontrib>Boudouvis, A G</creatorcontrib><title>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.</description><subject>Actuation</subject><subject>Air pockets</subject><subject>Case studies</subject><subject>Coalescing</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Continuity equation</subject><subject>Dependence</subject><subject>Droplets</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Forming</subject><subject>Free surfaces</subject><subject>Inclination</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Substrates</subject><subject>Water drops</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK1u_AEScCNCdF6Zx1KKTyouVHAXJpMbTUkycWYi-O9NW-3C1T3n8nG49yB0TPAFwUxfWhVajHVGlztoSiTnqVBc7W41e5uggxCWGDPFidhHE6q10oTRKSrmru2HaGLtOtMkdfcFIdbva5-4KjE2DhvTgv0wXR3asNqX3vUNxFF3Se-8G0Jiap_24FswRQNJGIoQvYkQDtFeZZoAR79zhl5vrl_md-ni6fZ-frVILctoTGmJK51JWZGKC9ACa1lqLstScGOZtlZwpQprQBIrSqZBYKmlLoCagtNMshk62-T23n0O4xt5WwcLTWM6GO_LKRZSKUY4H9HTf-jSDX4sYEXJTGIpMjZS5xvKeheChyrvfd0a_50TnK-az-fq-XHd_MMIn_xGDkUL5Rb9q5r9AH_Tf9o</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Chrysinas, P</creator><creator>Pashos, G</creator><creator>Vourdas, N</creator><creator>Kokkoris, G</creator><creator>Stathopoulos, V N</creator><creator>Boudouvis, A G</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2080-4909</orcidid><orcidid>https://orcid.org/0000-0003-4507-7311</orcidid><orcidid>https://orcid.org/0000-0001-8575-2313</orcidid><orcidid>https://orcid.org/0000-0001-6651-7318</orcidid><orcidid>https://orcid.org/0000-0002-8343-8619</orcidid><orcidid>https://orcid.org/0000-0002-6425-665X</orcidid></search><sort><creationdate>2018</creationdate><title>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</title><author>Chrysinas, P ; Pashos, G ; Vourdas, N ; Kokkoris, G ; Stathopoulos, V N ; Boudouvis, A G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuation</topic><topic>Air pockets</topic><topic>Case studies</topic><topic>Coalescing</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Continuity equation</topic><topic>Dependence</topic><topic>Droplets</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Forming</topic><topic>Free surfaces</topic><topic>Inclination</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Substrates</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrysinas, P</creatorcontrib><creatorcontrib>Pashos, G</creatorcontrib><creatorcontrib>Vourdas, N</creatorcontrib><creatorcontrib>Kokkoris, G</creatorcontrib><creatorcontrib>Stathopoulos, V N</creatorcontrib><creatorcontrib>Boudouvis, A G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrysinas, P</au><au>Pashos, G</au><au>Vourdas, N</au><au>Kokkoris, G</au><au>Stathopoulos, V N</au><au>Boudouvis, A G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>29</issue><spage>6090</spage><epage>6101</epage><pages>6090-6101</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29989132</pmid><doi>10.1039/c8sm00952j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2080-4909</orcidid><orcidid>https://orcid.org/0000-0003-4507-7311</orcidid><orcidid>https://orcid.org/0000-0001-8575-2313</orcidid><orcidid>https://orcid.org/0000-0001-6651-7318</orcidid><orcidid>https://orcid.org/0000-0002-8343-8619</orcidid><orcidid>https://orcid.org/0000-0002-6425-665X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2018, Vol.14 (29), p.6090-6101
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2067883144
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Actuation
Air pockets
Case studies
Coalescing
Computation
Computer applications
Continuity equation
Dependence
Droplets
Flow rates
Flow velocity
Forming
Free surfaces
Inclination
Mathematical models
Momentum transfer
Substrates
Water drops
title Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20investigation%20of%20actuation%20mechanisms%20of%20droplets%20on%20porous%20air-permeable%20substrates&rft.jtitle=Soft%20matter&rft.au=Chrysinas,%20P&rft.date=2018&rft.volume=14&rft.issue=29&rft.spage=6090&rft.epage=6101&rft.pages=6090-6101&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm00952j&rft_dat=%3Cproquest_cross%3E2067883144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075707653&rft_id=info:pmid/29989132&rfr_iscdi=true