Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates
We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using va...
Gespeichert in:
Veröffentlicht in: | Soft matter 2018, Vol.14 (29), p.6090-6101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6101 |
---|---|
container_issue | 29 |
container_start_page | 6090 |
container_title | Soft matter |
container_volume | 14 |
creator | Chrysinas, P Pashos, G Vourdas, N Kokkoris, G Stathopoulos, V N Boudouvis, A G |
description | We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume. |
doi_str_mv | 10.1039/c8sm00952j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2067883144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067883144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK1u_AEScCNCdF6Zx1KKTyouVHAXJpMbTUkycWYi-O9NW-3C1T3n8nG49yB0TPAFwUxfWhVajHVGlztoSiTnqVBc7W41e5uggxCWGDPFidhHE6q10oTRKSrmru2HaGLtOtMkdfcFIdbva5-4KjE2DhvTgv0wXR3asNqX3vUNxFF3Se-8G0Jiap_24FswRQNJGIoQvYkQDtFeZZoAR79zhl5vrl_md-ni6fZ-frVILctoTGmJK51JWZGKC9ACa1lqLstScGOZtlZwpQprQBIrSqZBYKmlLoCagtNMshk62-T23n0O4xt5WwcLTWM6GO_LKRZSKUY4H9HTf-jSDX4sYEXJTGIpMjZS5xvKeheChyrvfd0a_50TnK-az-fq-XHd_MMIn_xGDkUL5Rb9q5r9AH_Tf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075707653</pqid></control><display><type>article</type><title>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Chrysinas, P ; Pashos, G ; Vourdas, N ; Kokkoris, G ; Stathopoulos, V N ; Boudouvis, A G</creator><creatorcontrib>Chrysinas, P ; Pashos, G ; Vourdas, N ; Kokkoris, G ; Stathopoulos, V N ; Boudouvis, A G</creatorcontrib><description>We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm00952j</identifier><identifier>PMID: 29989132</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuation ; Air pockets ; Case studies ; Coalescing ; Computation ; Computer applications ; Continuity equation ; Dependence ; Droplets ; Flow rates ; Flow velocity ; Forming ; Free surfaces ; Inclination ; Mathematical models ; Momentum transfer ; Substrates ; Water drops</subject><ispartof>Soft matter, 2018, Vol.14 (29), p.6090-6101</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</citedby><cites>FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</cites><orcidid>0000-0002-2080-4909 ; 0000-0003-4507-7311 ; 0000-0001-8575-2313 ; 0000-0001-6651-7318 ; 0000-0002-8343-8619 ; 0000-0002-6425-665X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,27930,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chrysinas, P</creatorcontrib><creatorcontrib>Pashos, G</creatorcontrib><creatorcontrib>Vourdas, N</creatorcontrib><creatorcontrib>Kokkoris, G</creatorcontrib><creatorcontrib>Stathopoulos, V N</creatorcontrib><creatorcontrib>Boudouvis, A G</creatorcontrib><title>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.</description><subject>Actuation</subject><subject>Air pockets</subject><subject>Case studies</subject><subject>Coalescing</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Continuity equation</subject><subject>Dependence</subject><subject>Droplets</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Forming</subject><subject>Free surfaces</subject><subject>Inclination</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Substrates</subject><subject>Water drops</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK1u_AEScCNCdF6Zx1KKTyouVHAXJpMbTUkycWYi-O9NW-3C1T3n8nG49yB0TPAFwUxfWhVajHVGlztoSiTnqVBc7W41e5uggxCWGDPFidhHE6q10oTRKSrmru2HaGLtOtMkdfcFIdbva5-4KjE2DhvTgv0wXR3asNqX3vUNxFF3Se-8G0Jiap_24FswRQNJGIoQvYkQDtFeZZoAR79zhl5vrl_md-ni6fZ-frVILctoTGmJK51JWZGKC9ACa1lqLstScGOZtlZwpQprQBIrSqZBYKmlLoCagtNMshk62-T23n0O4xt5WwcLTWM6GO_LKRZSKUY4H9HTf-jSDX4sYEXJTGIpMjZS5xvKeheChyrvfd0a_50TnK-az-fq-XHd_MMIn_xGDkUL5Rb9q5r9AH_Tf9o</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Chrysinas, P</creator><creator>Pashos, G</creator><creator>Vourdas, N</creator><creator>Kokkoris, G</creator><creator>Stathopoulos, V N</creator><creator>Boudouvis, A G</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2080-4909</orcidid><orcidid>https://orcid.org/0000-0003-4507-7311</orcidid><orcidid>https://orcid.org/0000-0001-8575-2313</orcidid><orcidid>https://orcid.org/0000-0001-6651-7318</orcidid><orcidid>https://orcid.org/0000-0002-8343-8619</orcidid><orcidid>https://orcid.org/0000-0002-6425-665X</orcidid></search><sort><creationdate>2018</creationdate><title>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</title><author>Chrysinas, P ; Pashos, G ; Vourdas, N ; Kokkoris, G ; Stathopoulos, V N ; Boudouvis, A G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-2d0f9577f1f46e96097d947dd64ac39cc6488bcae71c6d39e607979be2ab42573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuation</topic><topic>Air pockets</topic><topic>Case studies</topic><topic>Coalescing</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Continuity equation</topic><topic>Dependence</topic><topic>Droplets</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Forming</topic><topic>Free surfaces</topic><topic>Inclination</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Substrates</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrysinas, P</creatorcontrib><creatorcontrib>Pashos, G</creatorcontrib><creatorcontrib>Vourdas, N</creatorcontrib><creatorcontrib>Kokkoris, G</creatorcontrib><creatorcontrib>Stathopoulos, V N</creatorcontrib><creatorcontrib>Boudouvis, A G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrysinas, P</au><au>Pashos, G</au><au>Vourdas, N</au><au>Kokkoris, G</au><au>Stathopoulos, V N</au><au>Boudouvis, A G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>29</issue><spage>6090</spage><epage>6101</epage><pages>6090-6101</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We study the actuation of droplets on porous substrates by air that permeates through pores. Air pockets are created between the droplets and the substrate which, eventually, incite the droplets to a quasi-moving state. We observe this mechanism computationally and verify it experimentally, using various case studies involving water droplets of different volume that are initially pinned on a porous substrate which has been set to different inclination levels and start to slide down when actuated by permeating air. The computational model employs the continuity equation and the equations of momentum transfer that are coupled with the Volume of Fluid (VOF) method, to track the shape of the droplet. We identify two dominant actuation mechanisms - seen in computations and experiments - that are given the names 'donut' and 'tunnel'. Both of them are characterized by the formation of small air pockets between the droplet and the substrate that coalesce into larger ones that finally escape the droplet, by collapsing its free surface. The two mechanisms differ in the way that the free surface of the droplet collapses. The donut mechanism has the free surface collapsing at its center, thus forming a hole in the middle of the droplet (hence the name, donut), whereas the tunnel mechanism has the free surface collapsing at its rear side, forming a horizontal hole that resembles a tunnel (hence the name). We compare each mechanism in terms of the event (mechanism) occurrence frequency and droplet displacement, and also provide the dependence of the droplet speed with respect to the flow rate of permeating air, substrate inclination and droplet volume.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29989132</pmid><doi>10.1039/c8sm00952j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2080-4909</orcidid><orcidid>https://orcid.org/0000-0003-4507-7311</orcidid><orcidid>https://orcid.org/0000-0001-8575-2313</orcidid><orcidid>https://orcid.org/0000-0001-6651-7318</orcidid><orcidid>https://orcid.org/0000-0002-8343-8619</orcidid><orcidid>https://orcid.org/0000-0002-6425-665X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2018, Vol.14 (29), p.6090-6101 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2067883144 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Actuation Air pockets Case studies Coalescing Computation Computer applications Continuity equation Dependence Droplets Flow rates Flow velocity Forming Free surfaces Inclination Mathematical models Momentum transfer Substrates Water drops |
title | Computational investigation of actuation mechanisms of droplets on porous air-permeable substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20investigation%20of%20actuation%20mechanisms%20of%20droplets%20on%20porous%20air-permeable%20substrates&rft.jtitle=Soft%20matter&rft.au=Chrysinas,%20P&rft.date=2018&rft.volume=14&rft.issue=29&rft.spage=6090&rft.epage=6101&rft.pages=6090-6101&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm00952j&rft_dat=%3Cproquest_cross%3E2067883144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075707653&rft_id=info:pmid/29989132&rfr_iscdi=true |