Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter
A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2008-05, Vol.42 (9), p.3316-3323 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3323 |
---|---|
container_issue | 9 |
container_start_page | 3316 |
container_title | Environmental science & technology |
container_volume | 42 |
creator | Sandradewi, Jisca Prévôt, Andre S. H Szidat, Sönke Perron, Nolwenn Alfarra, M. Rami Lanz, Valentin A Weingartner, Ernest Baltensperger, Urs |
description | A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PMwb, PMtraffic). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8–1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PMwb and PMtraffic values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions. |
doi_str_mv | 10.1021/es702253m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20670267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1472069141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-25e93b4184e66633b284317e5a314f584e858b31fca65c6e9dbffa3e5390b6ff3</originalsourceid><addsrcrecordid>eNplkV1v0zAUhi0EYqVwwR9AFhJIXAT8ESfpZVsGQ-pgQCd2Z52kx5u3JC62g-CX8HdxaNVKcGXJfvzoPecl5ClnrzkT_A2GkgmhZHePTLgSLFOV4vfJhDEus5ksrk7IoxBuGWNCsuohOeGVEoJzMSG_L4Ptr-kcvQuupSt7fRPpvA7Ob6N1PT1HCIPHDvsYqHGexhuknwfoo40Q7Q-kbzGi72wPf3ln6DfnNnQx-H4UQ7-haw_G2IaedjaEEVq6PnpbD-OPQKOjF-CjbYYWItJziEn4mDww0AZ8sj-n5PLd6Xp5lq0-vf-wnK8yyKWKmVA4k3XOqxyLopCyFlUueYkKJM-NSteVqmrJTQOFagqcbWpjQKKSM1YXxsgpebnzbr37PmCIOoVssG2hRzcELViRdluUCXz-D3jr0owpm05L5XklyxF6tYOatM7g0eittx34X5ozPValD1Ul9tleONQdbo7kvpsEvNgDEBpojYe-seHACSaTMTU8JdmOsyHiz8M7-DudcpdKry--6quP6os4Ywu9OHqhCcch_g_4B11XuKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230148377</pqid></control><display><type>article</type><title>Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sandradewi, Jisca ; Prévôt, Andre S. H ; Szidat, Sönke ; Perron, Nolwenn ; Alfarra, M. Rami ; Lanz, Valentin A ; Weingartner, Ernest ; Baltensperger, Urs</creator><creatorcontrib>Sandradewi, Jisca ; Prévôt, Andre S. H ; Szidat, Sönke ; Perron, Nolwenn ; Alfarra, M. Rami ; Lanz, Valentin A ; Weingartner, Ernest ; Baltensperger, Urs</creatorcontrib><description>A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PMwb, PMtraffic). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8–1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PMwb and PMtraffic values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es702253m</identifier><identifier>PMID: 18522112</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols ; Aerosols - analysis ; Air Pollutants - analysis ; Air pollution ; Airborne particulates ; Applied sciences ; Carbon ; Carbon - analysis ; Carbon - chemistry ; Dust ; Emissions ; Environmental Measurements Methods ; Environmental Monitoring - methods ; Environmental science ; Exact sciences and technology ; Fireplaces ; Human immunodeficiency virus ; Light ; Particle Size ; Particulate Matter - analysis ; Pollution ; Regression Analysis ; Seasons ; Sorption ; Switzerland ; Temperature ; Time Factors ; Wood</subject><ispartof>Environmental science & technology, 2008-05, Vol.42 (9), p.3316-3323</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society May 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-25e93b4184e66633b284317e5a314f584e858b31fca65c6e9dbffa3e5390b6ff3</citedby><cites>FETCH-LOGICAL-a435t-25e93b4184e66633b284317e5a314f584e858b31fca65c6e9dbffa3e5390b6ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es702253m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es702253m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20310201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18522112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandradewi, Jisca</creatorcontrib><creatorcontrib>Prévôt, Andre S. H</creatorcontrib><creatorcontrib>Szidat, Sönke</creatorcontrib><creatorcontrib>Perron, Nolwenn</creatorcontrib><creatorcontrib>Alfarra, M. Rami</creatorcontrib><creatorcontrib>Lanz, Valentin A</creatorcontrib><creatorcontrib>Weingartner, Ernest</creatorcontrib><creatorcontrib>Baltensperger, Urs</creatorcontrib><title>Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PMwb, PMtraffic). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8–1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PMwb and PMtraffic values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Air Pollutants - analysis</subject><subject>Air pollution</subject><subject>Airborne particulates</subject><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon - analysis</subject><subject>Carbon - chemistry</subject><subject>Dust</subject><subject>Emissions</subject><subject>Environmental Measurements Methods</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Fireplaces</subject><subject>Human immunodeficiency virus</subject><subject>Light</subject><subject>Particle Size</subject><subject>Particulate Matter - analysis</subject><subject>Pollution</subject><subject>Regression Analysis</subject><subject>Seasons</subject><subject>Sorption</subject><subject>Switzerland</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Wood</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkV1v0zAUhi0EYqVwwR9AFhJIXAT8ESfpZVsGQ-pgQCd2Z52kx5u3JC62g-CX8HdxaNVKcGXJfvzoPecl5ClnrzkT_A2GkgmhZHePTLgSLFOV4vfJhDEus5ksrk7IoxBuGWNCsuohOeGVEoJzMSG_L4Ptr-kcvQuupSt7fRPpvA7Ob6N1PT1HCIPHDvsYqHGexhuknwfoo40Q7Q-kbzGi72wPf3ln6DfnNnQx-H4UQ7-haw_G2IaedjaEEVq6PnpbD-OPQKOjF-CjbYYWItJziEn4mDww0AZ8sj-n5PLd6Xp5lq0-vf-wnK8yyKWKmVA4k3XOqxyLopCyFlUueYkKJM-NSteVqmrJTQOFagqcbWpjQKKSM1YXxsgpebnzbr37PmCIOoVssG2hRzcELViRdluUCXz-D3jr0owpm05L5XklyxF6tYOatM7g0eittx34X5ozPValD1Ul9tleONQdbo7kvpsEvNgDEBpojYe-seHACSaTMTU8JdmOsyHiz8M7-DudcpdKry--6quP6os4Ywu9OHqhCcch_g_4B11XuKI</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Sandradewi, Jisca</creator><creator>Prévôt, Andre S. H</creator><creator>Szidat, Sönke</creator><creator>Perron, Nolwenn</creator><creator>Alfarra, M. Rami</creator><creator>Lanz, Valentin A</creator><creator>Weingartner, Ernest</creator><creator>Baltensperger, Urs</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope></search><sort><creationdate>20080501</creationdate><title>Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter</title><author>Sandradewi, Jisca ; Prévôt, Andre S. H ; Szidat, Sönke ; Perron, Nolwenn ; Alfarra, M. Rami ; Lanz, Valentin A ; Weingartner, Ernest ; Baltensperger, Urs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-25e93b4184e66633b284317e5a314f584e858b31fca65c6e9dbffa3e5390b6ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Air Pollutants - analysis</topic><topic>Air pollution</topic><topic>Airborne particulates</topic><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon - analysis</topic><topic>Carbon - chemistry</topic><topic>Dust</topic><topic>Emissions</topic><topic>Environmental Measurements Methods</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Fireplaces</topic><topic>Human immunodeficiency virus</topic><topic>Light</topic><topic>Particle Size</topic><topic>Particulate Matter - analysis</topic><topic>Pollution</topic><topic>Regression Analysis</topic><topic>Seasons</topic><topic>Sorption</topic><topic>Switzerland</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandradewi, Jisca</creatorcontrib><creatorcontrib>Prévôt, Andre S. H</creatorcontrib><creatorcontrib>Szidat, Sönke</creatorcontrib><creatorcontrib>Perron, Nolwenn</creatorcontrib><creatorcontrib>Alfarra, M. Rami</creatorcontrib><creatorcontrib>Lanz, Valentin A</creatorcontrib><creatorcontrib>Weingartner, Ernest</creatorcontrib><creatorcontrib>Baltensperger, Urs</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandradewi, Jisca</au><au>Prévôt, Andre S. H</au><au>Szidat, Sönke</au><au>Perron, Nolwenn</au><au>Alfarra, M. Rami</au><au>Lanz, Valentin A</au><au>Weingartner, Ernest</au><au>Baltensperger, Urs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>42</volume><issue>9</issue><spage>3316</spage><epage>3323</epage><pages>3316-3323</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PMwb, PMtraffic). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8–1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PMwb and PMtraffic values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18522112</pmid><doi>10.1021/es702253m</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2008-05, Vol.42 (9), p.3316-3323 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_20670267 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aerosols Aerosols - analysis Air Pollutants - analysis Air pollution Airborne particulates Applied sciences Carbon Carbon - analysis Carbon - chemistry Dust Emissions Environmental Measurements Methods Environmental Monitoring - methods Environmental science Exact sciences and technology Fireplaces Human immunodeficiency virus Light Particle Size Particulate Matter - analysis Pollution Regression Analysis Seasons Sorption Switzerland Temperature Time Factors Wood |
title | Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Aerosol%20Light%20Absorption%20Measurements%20for%20the%20Quantitative%20Determination%20of%20Wood%20Burning%20and%20Traffic%20Emission%20Contributions%20to%20Particulate%20Matter&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sandradewi,%20Jisca&rft.date=2008-05-01&rft.volume=42&rft.issue=9&rft.spage=3316&rft.epage=3323&rft.pages=3316-3323&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es702253m&rft_dat=%3Cproquest_cross%3E1472069141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230148377&rft_id=info:pmid/18522112&rfr_iscdi=true |