Raindrop Size Distribution Modeling from a Statistical Rain Parameter Relation and Its Application to the TRMM Precipitation Radar Rain Retrieval Algorithm
A generalized method is presented to derive a ‘‘two scale’’ raindrop size distribution (DSD) model over a spatial or temporal domain in which a statistical rain parameter relation exists. The two-scale model is generally defined as a model in which one DSD parameter is allowed to vary rapidly and th...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2009-04, Vol.48 (4), p.716-724 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 4 |
container_start_page | 716 |
container_title | Journal of applied meteorology and climatology |
container_volume | 48 |
creator | Kozu, Toshiaki Iguchi, Toshio Shimomai, Toyoshi Kashiwagi, Nobuhisa |
description | A generalized method is presented to derive a ‘‘two scale’’ raindrop size distribution (DSD) model over a spatial or temporal domain in which a statistical rain parameter relation exists. The two-scale model is generally defined as a model in which one DSD parameter is allowed to vary rapidly and the other is constant over a certain space or time domain. The existence of a rain parameter relation such as the radar reflectivity–rainfall rate (Z–R) relation over a spatial or temporal domain is an example of such a two-scale DSD model. A procedure is described that employs a statistical rain parameter relation with an assumption of the gamma DSD model. An example usingZ–Rrelations obtained at Kototabang, West Sumatra, is presented. The result shows that the resulting two-scale DSD model expressed by conventional DSD parameters depends on the assumed value of parameterμwhile rain parameter relations such ask–Zₑrelations from those models using differentμvalues are very close to each other, indicating the stability of the model against the variation ofμand the validity of this method. The result is applied to the DSD model for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar 2A25 (versions 5 and 6) algorithm. The derivation procedure of the 2A25 DSD model is described. Through the application of this model, it has become possible to make a logically well-organized rain profiling algorithm and reasonable rain attenuation correction and rainfall estimates, as described in an earlier paper by Iguchi et al. |
doi_str_mv | 10.1175/2008jamc1998.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20668987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26172853</jstor_id><sourcerecordid>26172853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-2686419610dc355a3bf55cec796d26d6c555a3601aec8d12d736bca80d2626e73</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxU1JoUmaa28B0ZLediuNLVk-Lpv-ScmS4KRnMyvJiRbbciRtof0q_bKV45BAoacZ5v3ek-Bl2TtGl4yV_BNQKnfYK1ZVcsleZYeMc7mQRQ4HzzsUb7KjEHaUFkVZ8sPsT4120N6N5Mb-NuTchujtdh-tG8jGadPZ4Y603vUEyU3EmHSrsCOTjVyjx95E40ltOnz04KDJRQxkNY5dAh9v0ZF4b8htvdmQa2-UHW2clRo1-jmrNulh8zNFr7o75228799mr1vsgjl5msfZjy-fb9ffFpdXXy_Wq8uF4iDjAoQUBasEo1rlnGO-bTlXRpWV0CC0UHw6CsrQKKkZ6DIXW4WSJhWEKfPj7OOcO3r3sDchNr0NynQdDsbtQwNUCFnJCfzwD7hzez-kvzUggUugAFWi3v-XgkIAz-kUtZwh5V0I3rTN6G2P_lfDaDPV2Ux1fl9t1lOdDUuGs6dUDKmA1uOgbHh2ASukZBwSdzpzuxCdf9EFK0HyPP8LEnCp0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224625307</pqid></control><display><type>article</type><title>Raindrop Size Distribution Modeling from a Statistical Rain Parameter Relation and Its Application to the TRMM Precipitation Radar Rain Retrieval Algorithm</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kozu, Toshiaki ; Iguchi, Toshio ; Shimomai, Toyoshi ; Kashiwagi, Nobuhisa</creator><creatorcontrib>Kozu, Toshiaki ; Iguchi, Toshio ; Shimomai, Toyoshi ; Kashiwagi, Nobuhisa</creatorcontrib><description>A generalized method is presented to derive a ‘‘two scale’’ raindrop size distribution (DSD) model over a spatial or temporal domain in which a statistical rain parameter relation exists. The two-scale model is generally defined as a model in which one DSD parameter is allowed to vary rapidly and the other is constant over a certain space or time domain. The existence of a rain parameter relation such as the radar reflectivity–rainfall rate (Z–R) relation over a spatial or temporal domain is an example of such a two-scale DSD model. A procedure is described that employs a statistical rain parameter relation with an assumption of the gamma DSD model. An example usingZ–Rrelations obtained at Kototabang, West Sumatra, is presented. The result shows that the resulting two-scale DSD model expressed by conventional DSD parameters depends on the assumed value of parameterμwhile rain parameter relations such ask–Zₑrelations from those models using differentμvalues are very close to each other, indicating the stability of the model against the variation ofμand the validity of this method. The result is applied to the DSD model for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar 2A25 (versions 5 and 6) algorithm. The derivation procedure of the 2A25 DSD model is described. Through the application of this model, it has become possible to make a logically well-organized rain profiling algorithm and reasonable rain attenuation correction and rainfall estimates, as described in an earlier paper by Iguchi et al.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/2008jamc1998.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Algorithms ; Atmospheric precipitations ; Data processing ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Mathematical independent variables ; Mathematical models ; Meteorology ; Meteors ; Modelling ; Parameters ; Parametric models ; Precipitation ; Principal components analysis ; Procedures ; Radar ; Radar reflectivity ; Rain ; Rain attenuation ; Raindrop size distribution ; Raindrops ; Rainfall ; Rainfall measurement ; Rainfall rate ; Reflectance ; Remote sensing ; Scale models ; Size distribution ; Spatial models ; TRMM satellite ; Tropical rainfall ; Tropical Rainfall Measuring Mission (TRMM) ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Journal of applied meteorology and climatology, 2009-04, Vol.48 (4), p.716-724</ispartof><rights>2009 American Meteorological Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Meteorological Society Apr 2009</rights><rights>Copyright American Meteorological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-2686419610dc355a3bf55cec796d26d6c555a3601aec8d12d736bca80d2626e73</citedby><cites>FETCH-LOGICAL-c528t-2686419610dc355a3bf55cec796d26d6c555a3601aec8d12d736bca80d2626e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26172853$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26172853$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21488152$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozu, Toshiaki</creatorcontrib><creatorcontrib>Iguchi, Toshio</creatorcontrib><creatorcontrib>Shimomai, Toyoshi</creatorcontrib><creatorcontrib>Kashiwagi, Nobuhisa</creatorcontrib><title>Raindrop Size Distribution Modeling from a Statistical Rain Parameter Relation and Its Application to the TRMM Precipitation Radar Rain Retrieval Algorithm</title><title>Journal of applied meteorology and climatology</title><description>A generalized method is presented to derive a ‘‘two scale’’ raindrop size distribution (DSD) model over a spatial or temporal domain in which a statistical rain parameter relation exists. The two-scale model is generally defined as a model in which one DSD parameter is allowed to vary rapidly and the other is constant over a certain space or time domain. The existence of a rain parameter relation such as the radar reflectivity–rainfall rate (Z–R) relation over a spatial or temporal domain is an example of such a two-scale DSD model. A procedure is described that employs a statistical rain parameter relation with an assumption of the gamma DSD model. An example usingZ–Rrelations obtained at Kototabang, West Sumatra, is presented. The result shows that the resulting two-scale DSD model expressed by conventional DSD parameters depends on the assumed value of parameterμwhile rain parameter relations such ask–Zₑrelations from those models using differentμvalues are very close to each other, indicating the stability of the model against the variation ofμand the validity of this method. The result is applied to the DSD model for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar 2A25 (versions 5 and 6) algorithm. The derivation procedure of the 2A25 DSD model is described. Through the application of this model, it has become possible to make a logically well-organized rain profiling algorithm and reasonable rain attenuation correction and rainfall estimates, as described in an earlier paper by Iguchi et al.</description><subject>Algorithms</subject><subject>Atmospheric precipitations</subject><subject>Data processing</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Meteors</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Parametric models</subject><subject>Precipitation</subject><subject>Principal components analysis</subject><subject>Procedures</subject><subject>Radar</subject><subject>Radar reflectivity</subject><subject>Rain</subject><subject>Rain attenuation</subject><subject>Raindrop size distribution</subject><subject>Raindrops</subject><subject>Rainfall</subject><subject>Rainfall measurement</subject><subject>Rainfall rate</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Scale models</subject><subject>Size distribution</subject><subject>Spatial models</subject><subject>TRMM satellite</subject><subject>Tropical rainfall</subject><subject>Tropical Rainfall Measuring Mission (TRMM)</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU9r3DAQxU1JoUmaa28B0ZLediuNLVk-Lpv-ScmS4KRnMyvJiRbbciRtof0q_bKV45BAoacZ5v3ek-Bl2TtGl4yV_BNQKnfYK1ZVcsleZYeMc7mQRQ4HzzsUb7KjEHaUFkVZ8sPsT4120N6N5Mb-NuTchujtdh-tG8jGadPZ4Y603vUEyU3EmHSrsCOTjVyjx95E40ltOnz04KDJRQxkNY5dAh9v0ZF4b8htvdmQa2-UHW2clRo1-jmrNulh8zNFr7o75228799mr1vsgjl5msfZjy-fb9ffFpdXXy_Wq8uF4iDjAoQUBasEo1rlnGO-bTlXRpWV0CC0UHw6CsrQKKkZ6DIXW4WSJhWEKfPj7OOcO3r3sDchNr0NynQdDsbtQwNUCFnJCfzwD7hzez-kvzUggUugAFWi3v-XgkIAz-kUtZwh5V0I3rTN6G2P_lfDaDPV2Ux1fl9t1lOdDUuGs6dUDKmA1uOgbHh2ASukZBwSdzpzuxCdf9EFK0HyPP8LEnCp0g</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kozu, Toshiaki</creator><creator>Iguchi, Toshio</creator><creator>Shimomai, Toyoshi</creator><creator>Kashiwagi, Nobuhisa</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20090401</creationdate><title>Raindrop Size Distribution Modeling from a Statistical Rain Parameter Relation and Its Application to the TRMM Precipitation Radar Rain Retrieval Algorithm</title><author>Kozu, Toshiaki ; Iguchi, Toshio ; Shimomai, Toyoshi ; Kashiwagi, Nobuhisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-2686419610dc355a3bf55cec796d26d6c555a3601aec8d12d736bca80d2626e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Atmospheric precipitations</topic><topic>Data processing</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Meteors</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Parametric models</topic><topic>Precipitation</topic><topic>Principal components analysis</topic><topic>Procedures</topic><topic>Radar</topic><topic>Radar reflectivity</topic><topic>Rain</topic><topic>Rain attenuation</topic><topic>Raindrop size distribution</topic><topic>Raindrops</topic><topic>Rainfall</topic><topic>Rainfall measurement</topic><topic>Rainfall rate</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Scale models</topic><topic>Size distribution</topic><topic>Spatial models</topic><topic>TRMM satellite</topic><topic>Tropical rainfall</topic><topic>Tropical Rainfall Measuring Mission (TRMM)</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozu, Toshiaki</creatorcontrib><creatorcontrib>Iguchi, Toshio</creatorcontrib><creatorcontrib>Shimomai, Toyoshi</creatorcontrib><creatorcontrib>Kashiwagi, Nobuhisa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozu, Toshiaki</au><au>Iguchi, Toshio</au><au>Shimomai, Toyoshi</au><au>Kashiwagi, Nobuhisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raindrop Size Distribution Modeling from a Statistical Rain Parameter Relation and Its Application to the TRMM Precipitation Radar Rain Retrieval Algorithm</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>48</volume><issue>4</issue><spage>716</spage><epage>724</epage><pages>716-724</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>A generalized method is presented to derive a ‘‘two scale’’ raindrop size distribution (DSD) model over a spatial or temporal domain in which a statistical rain parameter relation exists. The two-scale model is generally defined as a model in which one DSD parameter is allowed to vary rapidly and the other is constant over a certain space or time domain. The existence of a rain parameter relation such as the radar reflectivity–rainfall rate (Z–R) relation over a spatial or temporal domain is an example of such a two-scale DSD model. A procedure is described that employs a statistical rain parameter relation with an assumption of the gamma DSD model. An example usingZ–Rrelations obtained at Kototabang, West Sumatra, is presented. The result shows that the resulting two-scale DSD model expressed by conventional DSD parameters depends on the assumed value of parameterμwhile rain parameter relations such ask–Zₑrelations from those models using differentμvalues are very close to each other, indicating the stability of the model against the variation ofμand the validity of this method. The result is applied to the DSD model for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar 2A25 (versions 5 and 6) algorithm. The derivation procedure of the 2A25 DSD model is described. Through the application of this model, it has become possible to make a logically well-organized rain profiling algorithm and reasonable rain attenuation correction and rainfall estimates, as described in an earlier paper by Iguchi et al.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2008jamc1998.1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2009-04, Vol.48 (4), p.716-724 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_miscellaneous_20668987 |
source | American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Atmospheric precipitations Data processing Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Mathematical independent variables Mathematical models Meteorology Meteors Modelling Parameters Parametric models Precipitation Principal components analysis Procedures Radar Radar reflectivity Rain Rain attenuation Raindrop size distribution Raindrops Rainfall Rainfall measurement Rainfall rate Reflectance Remote sensing Scale models Size distribution Spatial models TRMM satellite Tropical rainfall Tropical Rainfall Measuring Mission (TRMM) Water in the atmosphere (humidity, clouds, evaporation, precipitation) |
title | Raindrop Size Distribution Modeling from a Statistical Rain Parameter Relation and Its Application to the TRMM Precipitation Radar Rain Retrieval Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raindrop%20Size%20Distribution%20Modeling%20from%20a%20Statistical%20Rain%20Parameter%20Relation%20and%20Its%20Application%20to%20the%20TRMM%20Precipitation%20Radar%20Rain%20Retrieval%20Algorithm&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Kozu,%20Toshiaki&rft.date=2009-04-01&rft.volume=48&rft.issue=4&rft.spage=716&rft.epage=724&rft.pages=716-724&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/2008jamc1998.1&rft_dat=%3Cjstor_proqu%3E26172853%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224625307&rft_id=info:pmid/&rft_jstor_id=26172853&rfr_iscdi=true |