Atmospheric coherent X‐ray diffraction imaging for in situ structural analysis at SPring‐8 Hyogo beamline BL24XU

Coherent X‐ray diffraction imaging (CXDI) is a promising technique for non‐destructive structural analysis of micrometre‐sized non‐crystalline samples at nanometre resolutions. This article describes an atmospheric CXDI system developed at SPring‐8 Hyogo beamline BL24XU for in situ structural analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2018-07, Vol.25 (4), p.1229-1237
Hauptverfasser: Takayama, Yuki, Takami, Yuki, Fukuda, Keizo, Miyagawa, Takamasa, Kagoshima, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1237
container_issue 4
container_start_page 1229
container_title Journal of synchrotron radiation
container_volume 25
creator Takayama, Yuki
Takami, Yuki
Fukuda, Keizo
Miyagawa, Takamasa
Kagoshima, Yasushi
description Coherent X‐ray diffraction imaging (CXDI) is a promising technique for non‐destructive structural analysis of micrometre‐sized non‐crystalline samples at nanometre resolutions. This article describes an atmospheric CXDI system developed at SPring‐8 Hyogo beamline BL24XU for in situ structural analysis and designed for experiments at a photon energy of 8 keV. This relatively high X‐ray energy enables experiments to be conducted under ambient atmospheric conditions, which is advantageous for the visualization of samples in native states. The illumination condition with pinhole‐slit optics is optimized according to wave propagation calculations based on the Fresnel–Kirchhoff diffraction formula so that the sample is irradiated by X‐rays with a plane wavefront and high photon flux of ∼1 × 1010 photons/16 µmø(FWHM)/s. This work demonstrates the imaging performance of the atmospheric CXDI system by visualizing internal voids of sub‐micrometre‐sized colloidal gold particles at a resolution of 29.1 nm. A CXDI experiment with a single macroporous silica particle under controlled humidity was also performed by installing a home‐made humidity control device in the system. The in situ observation of changes in diffraction patterns according to humidity variation and reconstruction of projected electron‐density maps at 5.2% RH (relative humidity) and 82.6% RH at resolutions of 133 and 217 nm, respectively, were accomplished. A coherent X‐ray diffraction imaging (CXDI) system for structural analysis under atmospheric conditions has been constructed at SPring‐8 Hyogo beamline BL24XU. This article reports on the current status of the atmospheric CXDI system, including an attempt towards in situ investigation of structural changes in materials under controlled humidity.
doi_str_mv 10.1107/S1600577518006410
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2066475773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064904917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4459-59b1ce68c30af6ee339fbc77ca7761cbd34b45b03932ab67e1d35c6021f59b113</originalsourceid><addsrcrecordid>eNqFkcFKAzEURYMoWqsf4EYCbtxUk0kmaZa1qFUKClXQ1ZBJMzVlZlKTDDI7P8Fv9EtMbRXRhav3eJx74d0LwAFGJxgjfjrBDKGU8xT3EWIUow3QWZ56y9vmj30H7Ho_RwgznpBtsJMIwQXusw4Ig1BZv3jSziiobJy6DvDh_fXNyRZOTVE4qYKxNTSVnJl6BgvroKmhN6GBPrhGhcbJEspalq03HsoAJ7cuktGjD0etnVmYa1mVptbwbJzQh_s9sFXI0uv99eyC-4vzu-GoN765vBoOxj1FaSp6qcix0qyvCJIF05oQUeSKcyU5Z1jlU0JzmuaICJLInHGNpyRVDCW4WEox6YLjle_C2edG-5BVxitdlrLWtvFZghijPAZEInr0C53bxsWfPikqEBWYRwqvKOWs904X2cLFXFybYZQtK8n-VBI1h2vnJq_09Fvx1UEExAp4MaVu_3fMriePyeAxTZEgH23BmC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064904917</pqid></control><display><type>article</type><title>Atmospheric coherent X‐ray diffraction imaging for in situ structural analysis at SPring‐8 Hyogo beamline BL24XU</title><source>Wiley-Blackwell Open Access Titles</source><creator>Takayama, Yuki ; Takami, Yuki ; Fukuda, Keizo ; Miyagawa, Takamasa ; Kagoshima, Yasushi</creator><creatorcontrib>Takayama, Yuki ; Takami, Yuki ; Fukuda, Keizo ; Miyagawa, Takamasa ; Kagoshima, Yasushi</creatorcontrib><description>Coherent X‐ray diffraction imaging (CXDI) is a promising technique for non‐destructive structural analysis of micrometre‐sized non‐crystalline samples at nanometre resolutions. This article describes an atmospheric CXDI system developed at SPring‐8 Hyogo beamline BL24XU for in situ structural analysis and designed for experiments at a photon energy of 8 keV. This relatively high X‐ray energy enables experiments to be conducted under ambient atmospheric conditions, which is advantageous for the visualization of samples in native states. The illumination condition with pinhole‐slit optics is optimized according to wave propagation calculations based on the Fresnel–Kirchhoff diffraction formula so that the sample is irradiated by X‐rays with a plane wavefront and high photon flux of ∼1 × 1010 photons/16 µmø(FWHM)/s. This work demonstrates the imaging performance of the atmospheric CXDI system by visualizing internal voids of sub‐micrometre‐sized colloidal gold particles at a resolution of 29.1 nm. A CXDI experiment with a single macroporous silica particle under controlled humidity was also performed by installing a home‐made humidity control device in the system. The in situ observation of changes in diffraction patterns according to humidity variation and reconstruction of projected electron‐density maps at 5.2% RH (relative humidity) and 82.6% RH at resolutions of 133 and 217 nm, respectively, were accomplished. A coherent X‐ray diffraction imaging (CXDI) system for structural analysis under atmospheric conditions has been constructed at SPring‐8 Hyogo beamline BL24XU. This article reports on the current status of the atmospheric CXDI system, including an attempt towards in situ investigation of structural changes in materials under controlled humidity.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577518006410</identifier><identifier>PMID: 29979186</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>coherent X‐ray diffraction imaging ; Diffraction patterns ; Gold ; Humidity ; humidity control ; Imaging ; Moisture control ; non‐crystalline samples ; Photons ; Pinholes ; Relative humidity ; Silicon dioxide ; Structural analysis ; Wave diffraction ; Wave propagation ; X-ray diffraction</subject><ispartof>Journal of synchrotron radiation, 2018-07, Vol.25 (4), p.1229-1237</ispartof><rights>International Union of Crystallography, 2018</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4459-59b1ce68c30af6ee339fbc77ca7761cbd34b45b03932ab67e1d35c6021f59b113</citedby><cites>FETCH-LOGICAL-c4459-59b1ce68c30af6ee339fbc77ca7761cbd34b45b03932ab67e1d35c6021f59b113</cites><orcidid>0000-0003-4622-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600577518006410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600577518006410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,11549,27911,27912,45561,45562,46039,46463</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577518006410$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29979186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takayama, Yuki</creatorcontrib><creatorcontrib>Takami, Yuki</creatorcontrib><creatorcontrib>Fukuda, Keizo</creatorcontrib><creatorcontrib>Miyagawa, Takamasa</creatorcontrib><creatorcontrib>Kagoshima, Yasushi</creatorcontrib><title>Atmospheric coherent X‐ray diffraction imaging for in situ structural analysis at SPring‐8 Hyogo beamline BL24XU</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>Coherent X‐ray diffraction imaging (CXDI) is a promising technique for non‐destructive structural analysis of micrometre‐sized non‐crystalline samples at nanometre resolutions. This article describes an atmospheric CXDI system developed at SPring‐8 Hyogo beamline BL24XU for in situ structural analysis and designed for experiments at a photon energy of 8 keV. This relatively high X‐ray energy enables experiments to be conducted under ambient atmospheric conditions, which is advantageous for the visualization of samples in native states. The illumination condition with pinhole‐slit optics is optimized according to wave propagation calculations based on the Fresnel–Kirchhoff diffraction formula so that the sample is irradiated by X‐rays with a plane wavefront and high photon flux of ∼1 × 1010 photons/16 µmø(FWHM)/s. This work demonstrates the imaging performance of the atmospheric CXDI system by visualizing internal voids of sub‐micrometre‐sized colloidal gold particles at a resolution of 29.1 nm. A CXDI experiment with a single macroporous silica particle under controlled humidity was also performed by installing a home‐made humidity control device in the system. The in situ observation of changes in diffraction patterns according to humidity variation and reconstruction of projected electron‐density maps at 5.2% RH (relative humidity) and 82.6% RH at resolutions of 133 and 217 nm, respectively, were accomplished. A coherent X‐ray diffraction imaging (CXDI) system for structural analysis under atmospheric conditions has been constructed at SPring‐8 Hyogo beamline BL24XU. This article reports on the current status of the atmospheric CXDI system, including an attempt towards in situ investigation of structural changes in materials under controlled humidity.</description><subject>coherent X‐ray diffraction imaging</subject><subject>Diffraction patterns</subject><subject>Gold</subject><subject>Humidity</subject><subject>humidity control</subject><subject>Imaging</subject><subject>Moisture control</subject><subject>non‐crystalline samples</subject><subject>Photons</subject><subject>Pinholes</subject><subject>Relative humidity</subject><subject>Silicon dioxide</subject><subject>Structural analysis</subject><subject>Wave diffraction</subject><subject>Wave propagation</subject><subject>X-ray diffraction</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFKAzEURYMoWqsf4EYCbtxUk0kmaZa1qFUKClXQ1ZBJMzVlZlKTDDI7P8Fv9EtMbRXRhav3eJx74d0LwAFGJxgjfjrBDKGU8xT3EWIUow3QWZ56y9vmj30H7Ho_RwgznpBtsJMIwQXusw4Ig1BZv3jSziiobJy6DvDh_fXNyRZOTVE4qYKxNTSVnJl6BgvroKmhN6GBPrhGhcbJEspalq03HsoAJ7cuktGjD0etnVmYa1mVptbwbJzQh_s9sFXI0uv99eyC-4vzu-GoN765vBoOxj1FaSp6qcix0qyvCJIF05oQUeSKcyU5Z1jlU0JzmuaICJLInHGNpyRVDCW4WEox6YLjle_C2edG-5BVxitdlrLWtvFZghijPAZEInr0C53bxsWfPikqEBWYRwqvKOWs904X2cLFXFybYZQtK8n-VBI1h2vnJq_09Fvx1UEExAp4MaVu_3fMriePyeAxTZEgH23BmC0</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Takayama, Yuki</creator><creator>Takami, Yuki</creator><creator>Fukuda, Keizo</creator><creator>Miyagawa, Takamasa</creator><creator>Kagoshima, Yasushi</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4622-9102</orcidid></search><sort><creationdate>201807</creationdate><title>Atmospheric coherent X‐ray diffraction imaging for in situ structural analysis at SPring‐8 Hyogo beamline BL24XU</title><author>Takayama, Yuki ; Takami, Yuki ; Fukuda, Keizo ; Miyagawa, Takamasa ; Kagoshima, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4459-59b1ce68c30af6ee339fbc77ca7761cbd34b45b03932ab67e1d35c6021f59b113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>coherent X‐ray diffraction imaging</topic><topic>Diffraction patterns</topic><topic>Gold</topic><topic>Humidity</topic><topic>humidity control</topic><topic>Imaging</topic><topic>Moisture control</topic><topic>non‐crystalline samples</topic><topic>Photons</topic><topic>Pinholes</topic><topic>Relative humidity</topic><topic>Silicon dioxide</topic><topic>Structural analysis</topic><topic>Wave diffraction</topic><topic>Wave propagation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takayama, Yuki</creatorcontrib><creatorcontrib>Takami, Yuki</creatorcontrib><creatorcontrib>Fukuda, Keizo</creatorcontrib><creatorcontrib>Miyagawa, Takamasa</creatorcontrib><creatorcontrib>Kagoshima, Yasushi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takayama, Yuki</au><au>Takami, Yuki</au><au>Fukuda, Keizo</au><au>Miyagawa, Takamasa</au><au>Kagoshima, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric coherent X‐ray diffraction imaging for in situ structural analysis at SPring‐8 Hyogo beamline BL24XU</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2018-07</date><risdate>2018</risdate><volume>25</volume><issue>4</issue><spage>1229</spage><epage>1237</epage><pages>1229-1237</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Coherent X‐ray diffraction imaging (CXDI) is a promising technique for non‐destructive structural analysis of micrometre‐sized non‐crystalline samples at nanometre resolutions. This article describes an atmospheric CXDI system developed at SPring‐8 Hyogo beamline BL24XU for in situ structural analysis and designed for experiments at a photon energy of 8 keV. This relatively high X‐ray energy enables experiments to be conducted under ambient atmospheric conditions, which is advantageous for the visualization of samples in native states. The illumination condition with pinhole‐slit optics is optimized according to wave propagation calculations based on the Fresnel–Kirchhoff diffraction formula so that the sample is irradiated by X‐rays with a plane wavefront and high photon flux of ∼1 × 1010 photons/16 µmø(FWHM)/s. This work demonstrates the imaging performance of the atmospheric CXDI system by visualizing internal voids of sub‐micrometre‐sized colloidal gold particles at a resolution of 29.1 nm. A CXDI experiment with a single macroporous silica particle under controlled humidity was also performed by installing a home‐made humidity control device in the system. The in situ observation of changes in diffraction patterns according to humidity variation and reconstruction of projected electron‐density maps at 5.2% RH (relative humidity) and 82.6% RH at resolutions of 133 and 217 nm, respectively, were accomplished. A coherent X‐ray diffraction imaging (CXDI) system for structural analysis under atmospheric conditions has been constructed at SPring‐8 Hyogo beamline BL24XU. This article reports on the current status of the atmospheric CXDI system, including an attempt towards in situ investigation of structural changes in materials under controlled humidity.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>29979186</pmid><doi>10.1107/S1600577518006410</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4622-9102</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2018-07, Vol.25 (4), p.1229-1237
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_proquest_miscellaneous_2066475773
source Wiley-Blackwell Open Access Titles
subjects coherent X‐ray diffraction imaging
Diffraction patterns
Gold
Humidity
humidity control
Imaging
Moisture control
non‐crystalline samples
Photons
Pinholes
Relative humidity
Silicon dioxide
Structural analysis
Wave diffraction
Wave propagation
X-ray diffraction
title Atmospheric coherent X‐ray diffraction imaging for in situ structural analysis at SPring‐8 Hyogo beamline BL24XU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20coherent%20X%E2%80%90ray%20diffraction%20imaging%20for%20in%20situ%20structural%20analysis%20at%20SPring%E2%80%908%20Hyogo%20beamline%20BL24XU&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Takayama,%20Yuki&rft.date=2018-07&rft.volume=25&rft.issue=4&rft.spage=1229&rft.epage=1237&rft.pages=1229-1237&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577518006410&rft_dat=%3Cproquest_24P%3E2064904917%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064904917&rft_id=info:pmid/29979186&rfr_iscdi=true