Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors

Colloidal quantum dots (CQDs) with a band gap tunable in the mid-wave infrared (MWIR) region provide a cheap alternative to epitaxial commercial photodetectors such as HgCdTe (MCT) and InSb. Photoconductive HgTe CQD devices have demonstrated the potential of CQDs for MWIR photodetection but face lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-07, Vol.12 (7), p.7264-7271
Hauptverfasser: Ackerman, Matthew M, Tang, Xin, Guyot-Sionnest, Philippe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7271
container_issue 7
container_start_page 7264
container_title ACS nano
container_volume 12
creator Ackerman, Matthew M
Tang, Xin
Guyot-Sionnest, Philippe
description Colloidal quantum dots (CQDs) with a band gap tunable in the mid-wave infrared (MWIR) region provide a cheap alternative to epitaxial commercial photodetectors such as HgCdTe (MCT) and InSb. Photoconductive HgTe CQD devices have demonstrated the potential of CQDs for MWIR photodetection but face limitations in speed and sensitivity. Recently, a proof-of-concept HgTe photovoltaic (PV) detector was realized, achieving background-limited infrared photodetection at cryogenic temperatures. Using a modified PV device architecture, we report up to 2 orders of magnitude improvement in the sensitivity of the HgTe CQD photodetectors. A solid-state cation exchange method was introduced during device fabrication to chemically modify the interface potential, leading to an order of magnitude improvement of external quantum efficiency at room temperature. At 230 K, the HgTe CQD photodetectors reported here achieve a sensitivity of 109 Jones with a cutoff wavelength between 4 and 5 μm, which is comparable to that of commercial photodetectors. In addition to the chemical treatment, a thin-film interference structure was devised using an optical spacer to achieve near unity internal quantum efficiency upon reducing the operating temperature. The enhanced sensitivity of the HgTe CQD photodetectors reported here should motivate interest in a cheap, solution-processed MWIR photodetector for applications extending beyond research and military defense.
doi_str_mv 10.1021/acsnano.8b03425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2066473831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066473831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-31f977d8de444feb95c5317070bf91e963ee950ccd81efc8901952097f3bc4ef3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7P3qRHQbolTdM0R5lOB4qKit5CmrxgR9fMJBX8762s7ubpPXjf7wfvQ-iU4CnBGZkpHVrVumlZYZpnbA-NiaBFisvifX-3MzJCRyGsMGa85MUhGmVCcMZwNkbLhQoxUa1JnqENday_IJm7pnG1UU3y1Kk2duvkysXkvjbpm-rPy9Z65cEkjx8uOgMRdHQ-HKMDq5oAJ8OcoNfF9cv8Nr17uFnOL-9SRYWIKSVWcG5KA3meW6gE04wSjjmurCAgCgogGNbalASsLgUmgmVYcEsrnYOlE3S-7d1499lBiHJdBw1No1pwXZAZLoqc05KSHp1tUe1dCB6s3Ph6rfy3JFj--pODPzn46xNnQ3lXrcHs-D9hPXCxBfqkXLnOt_2v_9b9AFise20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066473831</pqid></control><display><type>article</type><title>Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors</title><source>American Chemical Society Journals</source><creator>Ackerman, Matthew M ; Tang, Xin ; Guyot-Sionnest, Philippe</creator><creatorcontrib>Ackerman, Matthew M ; Tang, Xin ; Guyot-Sionnest, Philippe</creatorcontrib><description>Colloidal quantum dots (CQDs) with a band gap tunable in the mid-wave infrared (MWIR) region provide a cheap alternative to epitaxial commercial photodetectors such as HgCdTe (MCT) and InSb. Photoconductive HgTe CQD devices have demonstrated the potential of CQDs for MWIR photodetection but face limitations in speed and sensitivity. Recently, a proof-of-concept HgTe photovoltaic (PV) detector was realized, achieving background-limited infrared photodetection at cryogenic temperatures. Using a modified PV device architecture, we report up to 2 orders of magnitude improvement in the sensitivity of the HgTe CQD photodetectors. A solid-state cation exchange method was introduced during device fabrication to chemically modify the interface potential, leading to an order of magnitude improvement of external quantum efficiency at room temperature. At 230 K, the HgTe CQD photodetectors reported here achieve a sensitivity of 109 Jones with a cutoff wavelength between 4 and 5 μm, which is comparable to that of commercial photodetectors. In addition to the chemical treatment, a thin-film interference structure was devised using an optical spacer to achieve near unity internal quantum efficiency upon reducing the operating temperature. The enhanced sensitivity of the HgTe CQD photodetectors reported here should motivate interest in a cheap, solution-processed MWIR photodetector for applications extending beyond research and military defense.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03425</identifier><identifier>PMID: 29975502</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-07, Vol.12 (7), p.7264-7271</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-31f977d8de444feb95c5317070bf91e963ee950ccd81efc8901952097f3bc4ef3</citedby><cites>FETCH-LOGICAL-a399t-31f977d8de444feb95c5317070bf91e963ee950ccd81efc8901952097f3bc4ef3</cites><orcidid>0000-0003-0178-6255 ; 0000-0001-5413-634X ; 0000-0003-0008-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b03425$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b03425$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29975502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackerman, Matthew M</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Guyot-Sionnest, Philippe</creatorcontrib><title>Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Colloidal quantum dots (CQDs) with a band gap tunable in the mid-wave infrared (MWIR) region provide a cheap alternative to epitaxial commercial photodetectors such as HgCdTe (MCT) and InSb. Photoconductive HgTe CQD devices have demonstrated the potential of CQDs for MWIR photodetection but face limitations in speed and sensitivity. Recently, a proof-of-concept HgTe photovoltaic (PV) detector was realized, achieving background-limited infrared photodetection at cryogenic temperatures. Using a modified PV device architecture, we report up to 2 orders of magnitude improvement in the sensitivity of the HgTe CQD photodetectors. A solid-state cation exchange method was introduced during device fabrication to chemically modify the interface potential, leading to an order of magnitude improvement of external quantum efficiency at room temperature. At 230 K, the HgTe CQD photodetectors reported here achieve a sensitivity of 109 Jones with a cutoff wavelength between 4 and 5 μm, which is comparable to that of commercial photodetectors. In addition to the chemical treatment, a thin-film interference structure was devised using an optical spacer to achieve near unity internal quantum efficiency upon reducing the operating temperature. The enhanced sensitivity of the HgTe CQD photodetectors reported here should motivate interest in a cheap, solution-processed MWIR photodetector for applications extending beyond research and military defense.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7P3qRHQbolTdM0R5lOB4qKit5CmrxgR9fMJBX8762s7ubpPXjf7wfvQ-iU4CnBGZkpHVrVumlZYZpnbA-NiaBFisvifX-3MzJCRyGsMGa85MUhGmVCcMZwNkbLhQoxUa1JnqENday_IJm7pnG1UU3y1Kk2duvkysXkvjbpm-rPy9Z65cEkjx8uOgMRdHQ-HKMDq5oAJ8OcoNfF9cv8Nr17uFnOL-9SRYWIKSVWcG5KA3meW6gE04wSjjmurCAgCgogGNbalASsLgUmgmVYcEsrnYOlE3S-7d1499lBiHJdBw1No1pwXZAZLoqc05KSHp1tUe1dCB6s3Ph6rfy3JFj--pODPzn46xNnQ3lXrcHs-D9hPXCxBfqkXLnOt_2v_9b9AFise20</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Ackerman, Matthew M</creator><creator>Tang, Xin</creator><creator>Guyot-Sionnest, Philippe</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0178-6255</orcidid><orcidid>https://orcid.org/0000-0001-5413-634X</orcidid><orcidid>https://orcid.org/0000-0003-0008-207X</orcidid></search><sort><creationdate>20180724</creationdate><title>Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors</title><author>Ackerman, Matthew M ; Tang, Xin ; Guyot-Sionnest, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-31f977d8de444feb95c5317070bf91e963ee950ccd81efc8901952097f3bc4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackerman, Matthew M</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Guyot-Sionnest, Philippe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackerman, Matthew M</au><au>Tang, Xin</au><au>Guyot-Sionnest, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>12</volume><issue>7</issue><spage>7264</spage><epage>7271</epage><pages>7264-7271</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Colloidal quantum dots (CQDs) with a band gap tunable in the mid-wave infrared (MWIR) region provide a cheap alternative to epitaxial commercial photodetectors such as HgCdTe (MCT) and InSb. Photoconductive HgTe CQD devices have demonstrated the potential of CQDs for MWIR photodetection but face limitations in speed and sensitivity. Recently, a proof-of-concept HgTe photovoltaic (PV) detector was realized, achieving background-limited infrared photodetection at cryogenic temperatures. Using a modified PV device architecture, we report up to 2 orders of magnitude improvement in the sensitivity of the HgTe CQD photodetectors. A solid-state cation exchange method was introduced during device fabrication to chemically modify the interface potential, leading to an order of magnitude improvement of external quantum efficiency at room temperature. At 230 K, the HgTe CQD photodetectors reported here achieve a sensitivity of 109 Jones with a cutoff wavelength between 4 and 5 μm, which is comparable to that of commercial photodetectors. In addition to the chemical treatment, a thin-film interference structure was devised using an optical spacer to achieve near unity internal quantum efficiency upon reducing the operating temperature. The enhanced sensitivity of the HgTe CQD photodetectors reported here should motivate interest in a cheap, solution-processed MWIR photodetector for applications extending beyond research and military defense.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29975502</pmid><doi>10.1021/acsnano.8b03425</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0178-6255</orcidid><orcidid>https://orcid.org/0000-0001-5413-634X</orcidid><orcidid>https://orcid.org/0000-0003-0008-207X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-07, Vol.12 (7), p.7264-7271
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2066473831
source American Chemical Society Journals
title Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Sensitive%20Colloidal%20Quantum%20Dot%20Mid-Wave%20Infrared%20Photodetectors&rft.jtitle=ACS%20nano&rft.au=Ackerman,%20Matthew%20M&rft.date=2018-07-24&rft.volume=12&rft.issue=7&rft.spage=7264&rft.epage=7271&rft.pages=7264-7271&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03425&rft_dat=%3Cproquest_cross%3E2066473831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066473831&rft_id=info:pmid/29975502&rfr_iscdi=true