Universality of free fall from the orbital motion of a pulsar in a stellar triple system

Einstein’s theory of gravity—the general theory of relativity 1 —is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity 2 , the strong equivalence principle of ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-07, Vol.559 (7712), p.73-76
Hauptverfasser: Archibald, Anne M., Gusinskaia, Nina V., Hessels, Jason W. T., Deller, Adam T., Kaplan, David L., Lorimer, Duncan R., Lynch, Ryan S., Ransom, Scott M., Stairs, Ingrid H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 7712
container_start_page 73
container_title Nature (London)
container_volume 559
creator Archibald, Anne M.
Gusinskaia, Nina V.
Hessels, Jason W. T.
Deller, Adam T.
Kaplan, David L.
Lorimer, Duncan R.
Lynch, Ryan S.
Ransom, Scott M.
Stairs, Ingrid H.
description Einstein’s theory of gravity—the general theory of relativity 1 —is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity 2 , the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies 3 , 4 are limited by the weak self-gravity of the bodies, and tests using pulsar–white-dwarf binaries 5 , 6 have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit with another white dwarf. This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. Here we report that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10 −6 . For a rough comparison, our limit on the strong-field Nordtvedt parameter, which measures violation of the universality of free fall, is a factor of ten smaller than that obtained from (weak-field) Solar System tests 3 , 4 and a factor of almost a thousand smaller than that obtained from other strong-field tests 5 , 6 . The accelerations of a pulsar and a white dwarf in a three-star system differ by at most a few parts per million, providing a much improved constraint on the universality of free fall.
doi_str_mv 10.1038/s41586-018-0265-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2064779377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592159136</galeid><sourcerecordid>A592159136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-dc94d9d0c5928ac036c3f88a4b454a530f5e302e56fd0cbcdcd8dd48bfaf0ba63</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEokvhB3BBEb0UoRQ7_ohzXK0KVKpAglZwsxxnvLhy4q3tIPbf42gLZdFWPng888zrkf0WxUuMzjAi4l2kmAleISwqVHNW4UfFAtOGV5SL5nGxQKjOFUH4UfEsxhuEEMMNfVoc1W3bkIaQRfH9erQ_IUTlbNqW3pQmAJRGOZcjP5TpB5Q-dDYpVw4-WT_OkCo3k4sqlHbMcUzgXD6kYDcOyrjNieF58SSrRHhxtx8X1-_Pr1Yfq8vPHy5Wy8tKc4pS1euW9m2PNGtroTQiXBMjhKIdZVQxggwDgmpg3GSo073uRd9T0RllUKc4OS5Od7qb4G8niEkONup5oBH8FGWNOG2aljRNRk_-Q2_8FMY8XabyawhUt-yeWisH0o7Gp6D0LCqXeUjMWkzma6sD1BpGCMr5EYzN6T3-9QFeb-yt_Bc6OwDl1cNg9UHVN3sNmUnwK63VFKO8-Ppln337MLu8-rb6tE_jHa2DjzGAkZtgBxW2EiM5m0_uzCez-eRsPolzz6u79526Afq_HX_cloF6B8RcGtcQ7j_gYdXfXD3fvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073380295</pqid></control><display><type>article</type><title>Universality of free fall from the orbital motion of a pulsar in a stellar triple system</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Archibald, Anne M. ; Gusinskaia, Nina V. ; Hessels, Jason W. T. ; Deller, Adam T. ; Kaplan, David L. ; Lorimer, Duncan R. ; Lynch, Ryan S. ; Ransom, Scott M. ; Stairs, Ingrid H.</creator><creatorcontrib>Archibald, Anne M. ; Gusinskaia, Nina V. ; Hessels, Jason W. T. ; Deller, Adam T. ; Kaplan, David L. ; Lorimer, Duncan R. ; Lynch, Ryan S. ; Ransom, Scott M. ; Stairs, Ingrid H.</creatorcontrib><description>Einstein’s theory of gravity—the general theory of relativity 1 —is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity 2 , the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies 3 , 4 are limited by the weak self-gravity of the bodies, and tests using pulsar–white-dwarf binaries 5 , 6 have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit with another white dwarf. This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. Here we report that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10 −6 . For a rough comparison, our limit on the strong-field Nordtvedt parameter, which measures violation of the universality of free fall, is a factor of ten smaller than that obtained from (weak-field) Solar System tests 3 , 4 and a factor of almost a thousand smaller than that obtained from other strong-field tests 5 , 6 . The accelerations of a pulsar and a white dwarf in a three-star system differ by at most a few parts per million, providing a much improved constraint on the universality of free fall.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0265-1</identifier><identifier>PMID: 29973733</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/4118 ; 639/766/34/4123 ; Binary stars ; Companion stars ; Equivalence principle ; Free fall ; General relativity (Physics) ; Gravitation theory ; Gravitational fields ; Gravity ; Gravity (Force) ; Humanities and Social Sciences ; Letter ; Milky Way ; multidisciplinary ; Neutron stars ; Observations ; Orbits ; Pulsars ; Relativism ; Relativity ; Resveratrol ; Science ; Science (multidisciplinary) ; Solar system ; Telescopes ; Theory of relativity ; Weightlessness ; White dwarf stars</subject><ispartof>Nature (London), 2018-07, Vol.559 (7712), p.73-76</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 5, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-dc94d9d0c5928ac036c3f88a4b454a530f5e302e56fd0cbcdcd8dd48bfaf0ba63</citedby><cites>FETCH-LOGICAL-c640t-dc94d9d0c5928ac036c3f88a4b454a530f5e302e56fd0cbcdcd8dd48bfaf0ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0265-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0265-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29973733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Archibald, Anne M.</creatorcontrib><creatorcontrib>Gusinskaia, Nina V.</creatorcontrib><creatorcontrib>Hessels, Jason W. T.</creatorcontrib><creatorcontrib>Deller, Adam T.</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Lorimer, Duncan R.</creatorcontrib><creatorcontrib>Lynch, Ryan S.</creatorcontrib><creatorcontrib>Ransom, Scott M.</creatorcontrib><creatorcontrib>Stairs, Ingrid H.</creatorcontrib><title>Universality of free fall from the orbital motion of a pulsar in a stellar triple system</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Einstein’s theory of gravity—the general theory of relativity 1 —is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity 2 , the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies 3 , 4 are limited by the weak self-gravity of the bodies, and tests using pulsar–white-dwarf binaries 5 , 6 have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit with another white dwarf. This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. Here we report that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10 −6 . For a rough comparison, our limit on the strong-field Nordtvedt parameter, which measures violation of the universality of free fall, is a factor of ten smaller than that obtained from (weak-field) Solar System tests 3 , 4 and a factor of almost a thousand smaller than that obtained from other strong-field tests 5 , 6 . The accelerations of a pulsar and a white dwarf in a three-star system differ by at most a few parts per million, providing a much improved constraint on the universality of free fall.</description><subject>639/33/34/4118</subject><subject>639/766/34/4123</subject><subject>Binary stars</subject><subject>Companion stars</subject><subject>Equivalence principle</subject><subject>Free fall</subject><subject>General relativity (Physics)</subject><subject>Gravitation theory</subject><subject>Gravitational fields</subject><subject>Gravity</subject><subject>Gravity (Force)</subject><subject>Humanities and Social Sciences</subject><subject>Letter</subject><subject>Milky Way</subject><subject>multidisciplinary</subject><subject>Neutron stars</subject><subject>Observations</subject><subject>Orbits</subject><subject>Pulsars</subject><subject>Relativism</subject><subject>Relativity</subject><subject>Resveratrol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar system</subject><subject>Telescopes</subject><subject>Theory of relativity</subject><subject>Weightlessness</subject><subject>White dwarf stars</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk1v1DAQhiMEokvhB3BBEb0UoRQ7_ohzXK0KVKpAglZwsxxnvLhy4q3tIPbf42gLZdFWPng888zrkf0WxUuMzjAi4l2kmAleISwqVHNW4UfFAtOGV5SL5nGxQKjOFUH4UfEsxhuEEMMNfVoc1W3bkIaQRfH9erQ_IUTlbNqW3pQmAJRGOZcjP5TpB5Q-dDYpVw4-WT_OkCo3k4sqlHbMcUzgXD6kYDcOyrjNieF58SSrRHhxtx8X1-_Pr1Yfq8vPHy5Wy8tKc4pS1euW9m2PNGtroTQiXBMjhKIdZVQxggwDgmpg3GSo073uRd9T0RllUKc4OS5Od7qb4G8niEkONup5oBH8FGWNOG2aljRNRk_-Q2_8FMY8XabyawhUt-yeWisH0o7Gp6D0LCqXeUjMWkzma6sD1BpGCMr5EYzN6T3-9QFeb-yt_Bc6OwDl1cNg9UHVN3sNmUnwK63VFKO8-Ppln337MLu8-rb6tE_jHa2DjzGAkZtgBxW2EiM5m0_uzCez-eRsPolzz6u79526Afq_HX_cloF6B8RcGtcQ7j_gYdXfXD3fvw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Archibald, Anne M.</creator><creator>Gusinskaia, Nina V.</creator><creator>Hessels, Jason W. T.</creator><creator>Deller, Adam T.</creator><creator>Kaplan, David L.</creator><creator>Lorimer, Duncan R.</creator><creator>Lynch, Ryan S.</creator><creator>Ransom, Scott M.</creator><creator>Stairs, Ingrid H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201807</creationdate><title>Universality of free fall from the orbital motion of a pulsar in a stellar triple system</title><author>Archibald, Anne M. ; Gusinskaia, Nina V. ; Hessels, Jason W. T. ; Deller, Adam T. ; Kaplan, David L. ; Lorimer, Duncan R. ; Lynch, Ryan S. ; Ransom, Scott M. ; Stairs, Ingrid H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-dc94d9d0c5928ac036c3f88a4b454a530f5e302e56fd0cbcdcd8dd48bfaf0ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/33/34/4118</topic><topic>639/766/34/4123</topic><topic>Binary stars</topic><topic>Companion stars</topic><topic>Equivalence principle</topic><topic>Free fall</topic><topic>General relativity (Physics)</topic><topic>Gravitation theory</topic><topic>Gravitational fields</topic><topic>Gravity</topic><topic>Gravity (Force)</topic><topic>Humanities and Social Sciences</topic><topic>Letter</topic><topic>Milky Way</topic><topic>multidisciplinary</topic><topic>Neutron stars</topic><topic>Observations</topic><topic>Orbits</topic><topic>Pulsars</topic><topic>Relativism</topic><topic>Relativity</topic><topic>Resveratrol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar system</topic><topic>Telescopes</topic><topic>Theory of relativity</topic><topic>Weightlessness</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archibald, Anne M.</creatorcontrib><creatorcontrib>Gusinskaia, Nina V.</creatorcontrib><creatorcontrib>Hessels, Jason W. T.</creatorcontrib><creatorcontrib>Deller, Adam T.</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Lorimer, Duncan R.</creatorcontrib><creatorcontrib>Lynch, Ryan S.</creatorcontrib><creatorcontrib>Ransom, Scott M.</creatorcontrib><creatorcontrib>Stairs, Ingrid H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archibald, Anne M.</au><au>Gusinskaia, Nina V.</au><au>Hessels, Jason W. T.</au><au>Deller, Adam T.</au><au>Kaplan, David L.</au><au>Lorimer, Duncan R.</au><au>Lynch, Ryan S.</au><au>Ransom, Scott M.</au><au>Stairs, Ingrid H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality of free fall from the orbital motion of a pulsar in a stellar triple system</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-07</date><risdate>2018</risdate><volume>559</volume><issue>7712</issue><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Einstein’s theory of gravity—the general theory of relativity 1 —is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity 2 , the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies 3 , 4 are limited by the weak self-gravity of the bodies, and tests using pulsar–white-dwarf binaries 5 , 6 have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit with another white dwarf. This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. Here we report that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10 −6 . For a rough comparison, our limit on the strong-field Nordtvedt parameter, which measures violation of the universality of free fall, is a factor of ten smaller than that obtained from (weak-field) Solar System tests 3 , 4 and a factor of almost a thousand smaller than that obtained from other strong-field tests 5 , 6 . The accelerations of a pulsar and a white dwarf in a three-star system differ by at most a few parts per million, providing a much improved constraint on the universality of free fall.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29973733</pmid><doi>10.1038/s41586-018-0265-1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-07, Vol.559 (7712), p.73-76
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2064779377
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/33/34/4118
639/766/34/4123
Binary stars
Companion stars
Equivalence principle
Free fall
General relativity (Physics)
Gravitation theory
Gravitational fields
Gravity
Gravity (Force)
Humanities and Social Sciences
Letter
Milky Way
multidisciplinary
Neutron stars
Observations
Orbits
Pulsars
Relativism
Relativity
Resveratrol
Science
Science (multidisciplinary)
Solar system
Telescopes
Theory of relativity
Weightlessness
White dwarf stars
title Universality of free fall from the orbital motion of a pulsar in a stellar triple system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20of%20free%20fall%20from%20the%20orbital%20motion%20of%20a%20pulsar%20in%20a%20stellar%20triple%20system&rft.jtitle=Nature%20(London)&rft.au=Archibald,%20Anne%20M.&rft.date=2018-07&rft.volume=559&rft.issue=7712&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0265-1&rft_dat=%3Cgale_proqu%3EA592159136%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073380295&rft_id=info:pmid/29973733&rft_galeid=A592159136&rfr_iscdi=true