Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification
The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2019-01, Vol.40 (2), p.e1800346-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e1800346 |
container_title | Macromolecular rapid communications. |
container_volume | 40 |
creator | Busatto, Nicolas Stolojan, Vlad Shaw, Michael Keddie, Joseph L. Roth, Peter J. |
description | The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature.
Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents. |
doi_str_mv | 10.1002/marc.201800346 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2064766720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064766720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EohfYskSW2LDJcGwnTsJuNGqhUluqUtaRxz7RuHLiwU6KwqqPUAmpD9gnqafTFokNK5_L509H-gl5x2DGAPinTgU948AqAJHLF2SXFZxloubly1QD5xkTQu6QvRgvAaDKgb8mO7yuy7zI-S65PUelB3uF9My7qfNhvbKanqrer1UYrHYYP9OzgKlTg_U9vbJqi2Kwvx9Gd9c3R70ZNRr6HV2b2nmM2C3dRFVvEhyHOPXDCqON9GJlvbu7_rPxJfLQjT54uvAB6Yk3trX6wfmGvGqVi_j28d0nPw4PLhZfs-NvX44W8-NMF0zKjBvJuGlLbRBMLrVqFdSsUDUwWQtIEyO0znlRcc1VIVpVVcsCyyLtjSgrsU8-br3r4H-OGIems1Gjc6pHP8aGg8xLKUsOCf3wD3rpx9Cn6xrOZAUl1LJI1GxL6eBjDNg262BTSFPDoNkk1mwSa54TSx_eP2rHZYfmGX-KKAH1FvhlHU7_0TUn8_PFX_k9DyGpIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168070965</pqid></control><display><type>article</type><title>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Busatto, Nicolas ; Stolojan, Vlad ; Shaw, Michael ; Keddie, Joseph L. ; Roth, Peter J.</creator><creatorcontrib>Busatto, Nicolas ; Stolojan, Vlad ; Shaw, Michael ; Keddie, Joseph L. ; Roth, Peter J.</creatorcontrib><description>The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature.
Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201800346</identifier><identifier>PMID: 29974542</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Assembly ; Benzyl Alcohols - chemistry ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Chain transfer ; Chemistry Techniques, Synthetic - methods ; Ethanol ; Formulations ; Gels ; Macromolecules ; Methacrylates - chemistry ; Microscopy, Electron, Scanning Transmission ; Models, Chemical ; Molecular chains ; Molecular Structure ; Monomers ; Morphology ; nanoparticle cross‐linking ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; PISA ; Polyethylene glycol ; Polymerization ; Polymers - chemical synthesis ; Polymers - chemistry ; postpolymerization modification ; Solvents ; Substitution reactions ; Sulfhydryl Compounds - chemistry ; Temperature ; Temperature effects ; temperature‐responsiveness ; thiol–para‐fluoro reaction ; Transition Temperature ; Vesicles</subject><ispartof>Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800346-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</citedby><cites>FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201800346$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201800346$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29974542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busatto, Nicolas</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><creatorcontrib>Shaw, Michael</creatorcontrib><creatorcontrib>Keddie, Joseph L.</creatorcontrib><creatorcontrib>Roth, Peter J.</creatorcontrib><title>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature.
Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.</description><subject>Addition polymerization</subject><subject>Assembly</subject><subject>Benzyl Alcohols - chemistry</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Chain transfer</subject><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Ethanol</subject><subject>Formulations</subject><subject>Gels</subject><subject>Macromolecules</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electron, Scanning Transmission</subject><subject>Models, Chemical</subject><subject>Molecular chains</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Morphology</subject><subject>nanoparticle cross‐linking</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>PISA</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>postpolymerization modification</subject><subject>Solvents</subject><subject>Substitution reactions</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>temperature‐responsiveness</subject><subject>thiol–para‐fluoro reaction</subject><subject>Transition Temperature</subject><subject>Vesicles</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EohfYskSW2LDJcGwnTsJuNGqhUluqUtaRxz7RuHLiwU6KwqqPUAmpD9gnqafTFokNK5_L509H-gl5x2DGAPinTgU948AqAJHLF2SXFZxloubly1QD5xkTQu6QvRgvAaDKgb8mO7yuy7zI-S65PUelB3uF9My7qfNhvbKanqrer1UYrHYYP9OzgKlTg_U9vbJqi2Kwvx9Gd9c3R70ZNRr6HV2b2nmM2C3dRFVvEhyHOPXDCqON9GJlvbu7_rPxJfLQjT54uvAB6Yk3trX6wfmGvGqVi_j28d0nPw4PLhZfs-NvX44W8-NMF0zKjBvJuGlLbRBMLrVqFdSsUDUwWQtIEyO0znlRcc1VIVpVVcsCyyLtjSgrsU8-br3r4H-OGIems1Gjc6pHP8aGg8xLKUsOCf3wD3rpx9Cn6xrOZAUl1LJI1GxL6eBjDNg262BTSFPDoNkk1mwSa54TSx_eP2rHZYfmGX-KKAH1FvhlHU7_0TUn8_PFX_k9DyGpIg</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Busatto, Nicolas</creator><creator>Stolojan, Vlad</creator><creator>Shaw, Michael</creator><creator>Keddie, Joseph L.</creator><creator>Roth, Peter J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</title><author>Busatto, Nicolas ; Stolojan, Vlad ; Shaw, Michael ; Keddie, Joseph L. ; Roth, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addition polymerization</topic><topic>Assembly</topic><topic>Benzyl Alcohols - chemistry</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Chain transfer</topic><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Ethanol</topic><topic>Formulations</topic><topic>Gels</topic><topic>Macromolecules</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electron, Scanning Transmission</topic><topic>Models, Chemical</topic><topic>Molecular chains</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Morphology</topic><topic>nanoparticle cross‐linking</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>PISA</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>postpolymerization modification</topic><topic>Solvents</topic><topic>Substitution reactions</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>temperature‐responsiveness</topic><topic>thiol–para‐fluoro reaction</topic><topic>Transition Temperature</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busatto, Nicolas</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><creatorcontrib>Shaw, Michael</creatorcontrib><creatorcontrib>Keddie, Joseph L.</creatorcontrib><creatorcontrib>Roth, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busatto, Nicolas</au><au>Stolojan, Vlad</au><au>Shaw, Michael</au><au>Keddie, Joseph L.</au><au>Roth, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2019-01</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>e1800346</spage><epage>n/a</epage><pages>e1800346-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature.
Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29974542</pmid><doi>10.1002/marc.201800346</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800346-n/a |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_2064766720 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Addition polymerization Assembly Benzyl Alcohols - chemistry Bridged Bicyclo Compounds, Heterocyclic - chemistry Chain transfer Chemistry Techniques, Synthetic - methods Ethanol Formulations Gels Macromolecules Methacrylates - chemistry Microscopy, Electron, Scanning Transmission Models, Chemical Molecular chains Molecular Structure Monomers Morphology nanoparticle cross‐linking Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure PISA Polyethylene glycol Polymerization Polymers - chemical synthesis Polymers - chemistry postpolymerization modification Solvents Substitution reactions Sulfhydryl Compounds - chemistry Temperature Temperature effects temperature‐responsiveness thiol–para‐fluoro reaction Transition Temperature Vesicles |
title | Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Polymorphic%20Nanoparticles:%20Preparation%20via%20Polymerization%E2%80%90Induced%20Self%E2%80%90Assembly%20and%20Postsynthesis%20Thiol%E2%80%93para%E2%80%90Fluoro%20Core%20Modification&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Busatto,%20Nicolas&rft.date=2019-01&rft.volume=40&rft.issue=2&rft.spage=e1800346&rft.epage=n/a&rft.pages=e1800346-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201800346&rft_dat=%3Cproquest_cross%3E2064766720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168070965&rft_id=info:pmid/29974542&rfr_iscdi=true |