Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification

The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2019-01, Vol.40 (2), p.e1800346-n/a
Hauptverfasser: Busatto, Nicolas, Stolojan, Vlad, Shaw, Michael, Keddie, Joseph L., Roth, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e1800346
container_title Macromolecular rapid communications.
container_volume 40
creator Busatto, Nicolas
Stolojan, Vlad
Shaw, Michael
Keddie, Joseph L.
Roth, Peter J.
description The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature. Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.
doi_str_mv 10.1002/marc.201800346
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2064766720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064766720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EohfYskSW2LDJcGwnTsJuNGqhUluqUtaRxz7RuHLiwU6KwqqPUAmpD9gnqafTFokNK5_L509H-gl5x2DGAPinTgU948AqAJHLF2SXFZxloubly1QD5xkTQu6QvRgvAaDKgb8mO7yuy7zI-S65PUelB3uF9My7qfNhvbKanqrer1UYrHYYP9OzgKlTg_U9vbJqi2Kwvx9Gd9c3R70ZNRr6HV2b2nmM2C3dRFVvEhyHOPXDCqON9GJlvbu7_rPxJfLQjT54uvAB6Yk3trX6wfmGvGqVi_j28d0nPw4PLhZfs-NvX44W8-NMF0zKjBvJuGlLbRBMLrVqFdSsUDUwWQtIEyO0znlRcc1VIVpVVcsCyyLtjSgrsU8-br3r4H-OGIems1Gjc6pHP8aGg8xLKUsOCf3wD3rpx9Cn6xrOZAUl1LJI1GxL6eBjDNg262BTSFPDoNkk1mwSa54TSx_eP2rHZYfmGX-KKAH1FvhlHU7_0TUn8_PFX_k9DyGpIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168070965</pqid></control><display><type>article</type><title>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Busatto, Nicolas ; Stolojan, Vlad ; Shaw, Michael ; Keddie, Joseph L. ; Roth, Peter J.</creator><creatorcontrib>Busatto, Nicolas ; Stolojan, Vlad ; Shaw, Michael ; Keddie, Joseph L. ; Roth, Peter J.</creatorcontrib><description>The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature. Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201800346</identifier><identifier>PMID: 29974542</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Assembly ; Benzyl Alcohols - chemistry ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Chain transfer ; Chemistry Techniques, Synthetic - methods ; Ethanol ; Formulations ; Gels ; Macromolecules ; Methacrylates - chemistry ; Microscopy, Electron, Scanning Transmission ; Models, Chemical ; Molecular chains ; Molecular Structure ; Monomers ; Morphology ; nanoparticle cross‐linking ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; PISA ; Polyethylene glycol ; Polymerization ; Polymers - chemical synthesis ; Polymers - chemistry ; postpolymerization modification ; Solvents ; Substitution reactions ; Sulfhydryl Compounds - chemistry ; Temperature ; Temperature effects ; temperature‐responsiveness ; thiol–para‐fluoro reaction ; Transition Temperature ; Vesicles</subject><ispartof>Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800346-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</citedby><cites>FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201800346$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201800346$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29974542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busatto, Nicolas</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><creatorcontrib>Shaw, Michael</creatorcontrib><creatorcontrib>Keddie, Joseph L.</creatorcontrib><creatorcontrib>Roth, Peter J.</creatorcontrib><title>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature. Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.</description><subject>Addition polymerization</subject><subject>Assembly</subject><subject>Benzyl Alcohols - chemistry</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Chain transfer</subject><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Ethanol</subject><subject>Formulations</subject><subject>Gels</subject><subject>Macromolecules</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electron, Scanning Transmission</subject><subject>Models, Chemical</subject><subject>Molecular chains</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Morphology</subject><subject>nanoparticle cross‐linking</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>PISA</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>postpolymerization modification</subject><subject>Solvents</subject><subject>Substitution reactions</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>temperature‐responsiveness</subject><subject>thiol–para‐fluoro reaction</subject><subject>Transition Temperature</subject><subject>Vesicles</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EohfYskSW2LDJcGwnTsJuNGqhUluqUtaRxz7RuHLiwU6KwqqPUAmpD9gnqafTFokNK5_L509H-gl5x2DGAPinTgU948AqAJHLF2SXFZxloubly1QD5xkTQu6QvRgvAaDKgb8mO7yuy7zI-S65PUelB3uF9My7qfNhvbKanqrer1UYrHYYP9OzgKlTg_U9vbJqi2Kwvx9Gd9c3R70ZNRr6HV2b2nmM2C3dRFVvEhyHOPXDCqON9GJlvbu7_rPxJfLQjT54uvAB6Yk3trX6wfmGvGqVi_j28d0nPw4PLhZfs-NvX44W8-NMF0zKjBvJuGlLbRBMLrVqFdSsUDUwWQtIEyO0znlRcc1VIVpVVcsCyyLtjSgrsU8-br3r4H-OGIems1Gjc6pHP8aGg8xLKUsOCf3wD3rpx9Cn6xrOZAUl1LJI1GxL6eBjDNg262BTSFPDoNkk1mwSa54TSx_eP2rHZYfmGX-KKAH1FvhlHU7_0TUn8_PFX_k9DyGpIg</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Busatto, Nicolas</creator><creator>Stolojan, Vlad</creator><creator>Shaw, Michael</creator><creator>Keddie, Joseph L.</creator><creator>Roth, Peter J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</title><author>Busatto, Nicolas ; Stolojan, Vlad ; Shaw, Michael ; Keddie, Joseph L. ; Roth, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5166-2d612df7cde0d46cafa0915a901693046cd3cc42582c2a53fa88b5e75016d3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addition polymerization</topic><topic>Assembly</topic><topic>Benzyl Alcohols - chemistry</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Chain transfer</topic><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Ethanol</topic><topic>Formulations</topic><topic>Gels</topic><topic>Macromolecules</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electron, Scanning Transmission</topic><topic>Models, Chemical</topic><topic>Molecular chains</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Morphology</topic><topic>nanoparticle cross‐linking</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>PISA</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>postpolymerization modification</topic><topic>Solvents</topic><topic>Substitution reactions</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>temperature‐responsiveness</topic><topic>thiol–para‐fluoro reaction</topic><topic>Transition Temperature</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busatto, Nicolas</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><creatorcontrib>Shaw, Michael</creatorcontrib><creatorcontrib>Keddie, Joseph L.</creatorcontrib><creatorcontrib>Roth, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busatto, Nicolas</au><au>Stolojan, Vlad</au><au>Shaw, Michael</au><au>Keddie, Joseph L.</au><au>Roth, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2019-01</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>e1800346</spage><epage>n/a</epage><pages>e1800346-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>The use of 2,3,4,5,6‐pentafluorobenzyl methacrylate (PFBMA) as a core‐forming monomer in ethanolic reversible addition–fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain‐extended with PFBMA leading to nanoparticle formation via polymerization‐induced self‐assembly (PISA). pPEGMA‐pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo‐reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol–para‐fluoro substitution reactions in ethanol using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as the base. For monothiols, conversions were 64% (1‐octanethiol) and 94% (benzyl mercaptan). Spherical and worm‐shaped nano‐objects were core cross‐linked using 1,8‐octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature‐responsive worm sample, cross‐linking additionally resulted in the loss of the temperature‐triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well‐defined nano‐objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature. Polymer nanoparticles with tuneable morphologies, temperature‐responsiveness, and reactive cores are prepared through reversible addition–fragmentation chain transfer dispersion polymerization and polymerization‐induced self‐assembly based on 2,3,4,5,6‐pentafluorobenzyl methacrylate. Para‐fluoro substitution with a dithiol successfully cross‐linked nanoparticles, resulting in temperature‐independent morphology retention in nonselective solvents.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29974542</pmid><doi>10.1002/marc.201800346</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800346-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2064766720
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Addition polymerization
Assembly
Benzyl Alcohols - chemistry
Bridged Bicyclo Compounds, Heterocyclic - chemistry
Chain transfer
Chemistry Techniques, Synthetic - methods
Ethanol
Formulations
Gels
Macromolecules
Methacrylates - chemistry
Microscopy, Electron, Scanning Transmission
Models, Chemical
Molecular chains
Molecular Structure
Monomers
Morphology
nanoparticle cross‐linking
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
PISA
Polyethylene glycol
Polymerization
Polymers - chemical synthesis
Polymers - chemistry
postpolymerization modification
Solvents
Substitution reactions
Sulfhydryl Compounds - chemistry
Temperature
Temperature effects
temperature‐responsiveness
thiol–para‐fluoro reaction
Transition Temperature
Vesicles
title Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Polymorphic%20Nanoparticles:%20Preparation%20via%20Polymerization%E2%80%90Induced%20Self%E2%80%90Assembly%20and%20Postsynthesis%20Thiol%E2%80%93para%E2%80%90Fluoro%20Core%20Modification&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Busatto,%20Nicolas&rft.date=2019-01&rft.volume=40&rft.issue=2&rft.spage=e1800346&rft.epage=n/a&rft.pages=e1800346-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201800346&rft_dat=%3Cproquest_cross%3E2064766720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168070965&rft_id=info:pmid/29974542&rfr_iscdi=true