Force-activated catalytic pathway accelerates bacterial adhesion against flow
Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that e...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2018-08, Vol.475 (16), p.2611-2620 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2620 |
---|---|
container_issue | 16 |
container_start_page | 2611 |
container_title | Biochemical journal |
container_volume | 475 |
creator | Hazra, Jagadish P Arora, Nisha Sagar, Amin Srinivasan, Shwetha Chaudhuri, Abhishek Rakshit, Sabyasachi |
description | Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency. |
doi_str_mv | 10.1042/BCJ20180358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2063718791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063718791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-a6bcdaff01c5c6aa58168b148cfd77743b98deaaaecdeb5313365b5ce04f59d43</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EglKY2FFGJBS4fsR2RqgoDxWxwBzd2DcQlDbFdqn67wkqIKYznE9HRx9jJxwuOChxeT15EMAtyMLusBFXBnJrhN1lIxBa5RoEP2CHMb4DcAUK9tmBKEttQOsRe5z2wVGOLrWfmMhnDhN2m9S6bInpbY2bDJ2jjsLQxqweQAotdhn6N4ptv8jwFdtFTFnT9esjttdgF-n4J8fsZXrzPLnLZ0-395OrWe6EMilHXTuPTQPcFU4jFpZrW3NlXeONMUrWpfWEiOQ81YXkUuqiLhyBaorSKzlmZ9vdZeg_VhRTNW_j8LLDBfWrWAnQ0nBrSj6g51vUhT7GQE21DO0cw6biUH37q_75G-jTn-FVPSf_x_4Kk1_KbWwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063718791</pqid></control><display><type>article</type><title>Force-activated catalytic pathway accelerates bacterial adhesion against flow</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hazra, Jagadish P ; Arora, Nisha ; Sagar, Amin ; Srinivasan, Shwetha ; Chaudhuri, Abhishek ; Rakshit, Sabyasachi</creator><creatorcontrib>Hazra, Jagadish P ; Arora, Nisha ; Sagar, Amin ; Srinivasan, Shwetha ; Chaudhuri, Abhishek ; Rakshit, Sabyasachi</creatorcontrib><description>Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20180358</identifier><identifier>PMID: 29967066</identifier><language>eng</language><publisher>England</publisher><subject>Bacterial Adhesion - physiology ; Catalysis ; Escherichia coli - enzymology ; Escherichia coli - genetics</subject><ispartof>Biochemical journal, 2018-08, Vol.475 (16), p.2611-2620</ispartof><rights>2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-a6bcdaff01c5c6aa58168b148cfd77743b98deaaaecdeb5313365b5ce04f59d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29967066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hazra, Jagadish P</creatorcontrib><creatorcontrib>Arora, Nisha</creatorcontrib><creatorcontrib>Sagar, Amin</creatorcontrib><creatorcontrib>Srinivasan, Shwetha</creatorcontrib><creatorcontrib>Chaudhuri, Abhishek</creatorcontrib><creatorcontrib>Rakshit, Sabyasachi</creatorcontrib><title>Force-activated catalytic pathway accelerates bacterial adhesion against flow</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.</description><subject>Bacterial Adhesion - physiology</subject><subject>Catalysis</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAUhS0EglKY2FFGJBS4fsR2RqgoDxWxwBzd2DcQlDbFdqn67wkqIKYznE9HRx9jJxwuOChxeT15EMAtyMLusBFXBnJrhN1lIxBa5RoEP2CHMb4DcAUK9tmBKEttQOsRe5z2wVGOLrWfmMhnDhN2m9S6bInpbY2bDJ2jjsLQxqweQAotdhn6N4ptv8jwFdtFTFnT9esjttdgF-n4J8fsZXrzPLnLZ0-395OrWe6EMilHXTuPTQPcFU4jFpZrW3NlXeONMUrWpfWEiOQ81YXkUuqiLhyBaorSKzlmZ9vdZeg_VhRTNW_j8LLDBfWrWAnQ0nBrSj6g51vUhT7GQE21DO0cw6biUH37q_75G-jTn-FVPSf_x_4Kk1_KbWwI</recordid><startdate>20180831</startdate><enddate>20180831</enddate><creator>Hazra, Jagadish P</creator><creator>Arora, Nisha</creator><creator>Sagar, Amin</creator><creator>Srinivasan, Shwetha</creator><creator>Chaudhuri, Abhishek</creator><creator>Rakshit, Sabyasachi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180831</creationdate><title>Force-activated catalytic pathway accelerates bacterial adhesion against flow</title><author>Hazra, Jagadish P ; Arora, Nisha ; Sagar, Amin ; Srinivasan, Shwetha ; Chaudhuri, Abhishek ; Rakshit, Sabyasachi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-a6bcdaff01c5c6aa58168b148cfd77743b98deaaaecdeb5313365b5ce04f59d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Adhesion - physiology</topic><topic>Catalysis</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, Jagadish P</creatorcontrib><creatorcontrib>Arora, Nisha</creatorcontrib><creatorcontrib>Sagar, Amin</creatorcontrib><creatorcontrib>Srinivasan, Shwetha</creatorcontrib><creatorcontrib>Chaudhuri, Abhishek</creatorcontrib><creatorcontrib>Rakshit, Sabyasachi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, Jagadish P</au><au>Arora, Nisha</au><au>Sagar, Amin</au><au>Srinivasan, Shwetha</au><au>Chaudhuri, Abhishek</au><au>Rakshit, Sabyasachi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force-activated catalytic pathway accelerates bacterial adhesion against flow</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2018-08-31</date><risdate>2018</risdate><volume>475</volume><issue>16</issue><spage>2611</spage><epage>2620</epage><pages>2611-2620</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.</abstract><cop>England</cop><pmid>29967066</pmid><doi>10.1042/BCJ20180358</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2018-08, Vol.475 (16), p.2611-2620 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_proquest_miscellaneous_2063718791 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Bacterial Adhesion - physiology Catalysis Escherichia coli - enzymology Escherichia coli - genetics |
title | Force-activated catalytic pathway accelerates bacterial adhesion against flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force-activated%20catalytic%20pathway%20accelerates%20bacterial%20adhesion%20against%20flow&rft.jtitle=Biochemical%20journal&rft.au=Hazra,%20Jagadish%20P&rft.date=2018-08-31&rft.volume=475&rft.issue=16&rft.spage=2611&rft.epage=2620&rft.pages=2611-2620&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20180358&rft_dat=%3Cproquest_cross%3E2063718791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063718791&rft_id=info:pmid/29967066&rfr_iscdi=true |