Force-activated catalytic pathway accelerates bacterial adhesion against flow

Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2018-08, Vol.475 (16), p.2611-2620
Hauptverfasser: Hazra, Jagadish P, Arora, Nisha, Sagar, Amin, Srinivasan, Shwetha, Chaudhuri, Abhishek, Rakshit, Sabyasachi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2620
container_issue 16
container_start_page 2611
container_title Biochemical journal
container_volume 475
creator Hazra, Jagadish P
Arora, Nisha
Sagar, Amin
Srinivasan, Shwetha
Chaudhuri, Abhishek
Rakshit, Sabyasachi
description Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.
doi_str_mv 10.1042/BCJ20180358
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2063718791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063718791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-a6bcdaff01c5c6aa58168b148cfd77743b98deaaaecdeb5313365b5ce04f59d43</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EglKY2FFGJBS4fsR2RqgoDxWxwBzd2DcQlDbFdqn67wkqIKYznE9HRx9jJxwuOChxeT15EMAtyMLusBFXBnJrhN1lIxBa5RoEP2CHMb4DcAUK9tmBKEttQOsRe5z2wVGOLrWfmMhnDhN2m9S6bInpbY2bDJ2jjsLQxqweQAotdhn6N4ptv8jwFdtFTFnT9esjttdgF-n4J8fsZXrzPLnLZ0-395OrWe6EMilHXTuPTQPcFU4jFpZrW3NlXeONMUrWpfWEiOQ81YXkUuqiLhyBaorSKzlmZ9vdZeg_VhRTNW_j8LLDBfWrWAnQ0nBrSj6g51vUhT7GQE21DO0cw6biUH37q_75G-jTn-FVPSf_x_4Kk1_KbWwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063718791</pqid></control><display><type>article</type><title>Force-activated catalytic pathway accelerates bacterial adhesion against flow</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hazra, Jagadish P ; Arora, Nisha ; Sagar, Amin ; Srinivasan, Shwetha ; Chaudhuri, Abhishek ; Rakshit, Sabyasachi</creator><creatorcontrib>Hazra, Jagadish P ; Arora, Nisha ; Sagar, Amin ; Srinivasan, Shwetha ; Chaudhuri, Abhishek ; Rakshit, Sabyasachi</creatorcontrib><description>Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20180358</identifier><identifier>PMID: 29967066</identifier><language>eng</language><publisher>England</publisher><subject>Bacterial Adhesion - physiology ; Catalysis ; Escherichia coli - enzymology ; Escherichia coli - genetics</subject><ispartof>Biochemical journal, 2018-08, Vol.475 (16), p.2611-2620</ispartof><rights>2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-a6bcdaff01c5c6aa58168b148cfd77743b98deaaaecdeb5313365b5ce04f59d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29967066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hazra, Jagadish P</creatorcontrib><creatorcontrib>Arora, Nisha</creatorcontrib><creatorcontrib>Sagar, Amin</creatorcontrib><creatorcontrib>Srinivasan, Shwetha</creatorcontrib><creatorcontrib>Chaudhuri, Abhishek</creatorcontrib><creatorcontrib>Rakshit, Sabyasachi</creatorcontrib><title>Force-activated catalytic pathway accelerates bacterial adhesion against flow</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.</description><subject>Bacterial Adhesion - physiology</subject><subject>Catalysis</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAUhS0EglKY2FFGJBS4fsR2RqgoDxWxwBzd2DcQlDbFdqn67wkqIKYznE9HRx9jJxwuOChxeT15EMAtyMLusBFXBnJrhN1lIxBa5RoEP2CHMb4DcAUK9tmBKEttQOsRe5z2wVGOLrWfmMhnDhN2m9S6bInpbY2bDJ2jjsLQxqweQAotdhn6N4ptv8jwFdtFTFnT9esjttdgF-n4J8fsZXrzPLnLZ0-395OrWe6EMilHXTuPTQPcFU4jFpZrW3NlXeONMUrWpfWEiOQ81YXkUuqiLhyBaorSKzlmZ9vdZeg_VhRTNW_j8LLDBfWrWAnQ0nBrSj6g51vUhT7GQE21DO0cw6biUH37q_75G-jTn-FVPSf_x_4Kk1_KbWwI</recordid><startdate>20180831</startdate><enddate>20180831</enddate><creator>Hazra, Jagadish P</creator><creator>Arora, Nisha</creator><creator>Sagar, Amin</creator><creator>Srinivasan, Shwetha</creator><creator>Chaudhuri, Abhishek</creator><creator>Rakshit, Sabyasachi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180831</creationdate><title>Force-activated catalytic pathway accelerates bacterial adhesion against flow</title><author>Hazra, Jagadish P ; Arora, Nisha ; Sagar, Amin ; Srinivasan, Shwetha ; Chaudhuri, Abhishek ; Rakshit, Sabyasachi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-a6bcdaff01c5c6aa58168b148cfd77743b98deaaaecdeb5313365b5ce04f59d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Adhesion - physiology</topic><topic>Catalysis</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, Jagadish P</creatorcontrib><creatorcontrib>Arora, Nisha</creatorcontrib><creatorcontrib>Sagar, Amin</creatorcontrib><creatorcontrib>Srinivasan, Shwetha</creatorcontrib><creatorcontrib>Chaudhuri, Abhishek</creatorcontrib><creatorcontrib>Rakshit, Sabyasachi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, Jagadish P</au><au>Arora, Nisha</au><au>Sagar, Amin</au><au>Srinivasan, Shwetha</au><au>Chaudhuri, Abhishek</au><au>Rakshit, Sabyasachi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force-activated catalytic pathway accelerates bacterial adhesion against flow</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2018-08-31</date><risdate>2018</risdate><volume>475</volume><issue>16</issue><spage>2611</spage><epage>2620</epage><pages>2611-2620</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.</abstract><cop>England</cop><pmid>29967066</pmid><doi>10.1042/BCJ20180358</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2018-08, Vol.475 (16), p.2611-2620
issn 0264-6021
1470-8728
language eng
recordid cdi_proquest_miscellaneous_2063718791
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Bacterial Adhesion - physiology
Catalysis
Escherichia coli - enzymology
Escherichia coli - genetics
title Force-activated catalytic pathway accelerates bacterial adhesion against flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force-activated%20catalytic%20pathway%20accelerates%20bacterial%20adhesion%20against%20flow&rft.jtitle=Biochemical%20journal&rft.au=Hazra,%20Jagadish%20P&rft.date=2018-08-31&rft.volume=475&rft.issue=16&rft.spage=2611&rft.epage=2620&rft.pages=2611-2620&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20180358&rft_dat=%3Cproquest_cross%3E2063718791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063718791&rft_id=info:pmid/29967066&rfr_iscdi=true