Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization
Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo applicat...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 2004-09, Vol.113 (1), p.183-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Journal of biotechnology |
container_volume | 113 |
creator | Bühler, Bruno Schmid, Andreas |
description | Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes. |
doi_str_mv | 10.1016/j.jbiotec.2004.03.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20633038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165604003141</els_id><sourcerecordid>20633038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-1f7b3bc3f318bde34dffe62e55db08439cc0952d3d842cacae81f45fef56c1673</originalsourceid><addsrcrecordid>eNqFkMFq3DAQQEVJaTZJPyHBl_RmR7IsWXsqYUmbwkJyaM5CHo2oFtvaSnbI9uur7Rpy7Ekg3psZHiHXjFaMMnm3q3adDxNCVVPaVJRXtG4_kBVTLS8bJfkZWWVOlUwKeU4uUtrRDK4F-0TOmeCK5v8VeX6OATClwg_7HgccJzP5MBYm7RGmVLgQi7wHzGT6w-Sh-HWw2TCxy1B4O7h5hKNgev_nn3lFPjrTJ_y8vJfk5dvDz81juX36_mNzvy1B1GIqmWs73gF3nKnOIm-scyhrFMJ2VDV8DUDXorbcqqYGAwYVc41w6IQEJlt-Sb6c5u5j-D1jmvTgE2DfmxHDnHRNJeeUqwyKEwgxpBTR6X30g4kHzag-ptQ7vaTUx5Sacp1TZu9mWTB3A9p3a2mXgdsFMAlM76IZwad3TrKmVfR4wNcThznHq8eoE3gcAa2PubG2wf_nlL8TI5eC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20633038</pqid></control><display><type>article</type><title>Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bühler, Bruno ; Schmid, Andreas</creator><creatorcontrib>Bühler, Bruno ; Schmid, Andreas</creatorcontrib><description>Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2004.03.027</identifier><identifier>PMID: 15380656</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Biocatalysis ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Fundamental and applied biological sciences. Psychology ; Hydrocarbon functionalization ; Hydrocarbons - chemistry ; Hydrocarbons - metabolism ; Oxygenase ; Oxygenases - chemistry ; Oxygenases - metabolism ; Process implementation</subject><ispartof>Journal of biotechnology, 2004-09, Vol.113 (1), p.183-210</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-1f7b3bc3f318bde34dffe62e55db08439cc0952d3d842cacae81f45fef56c1673</citedby><cites>FETCH-LOGICAL-c525t-1f7b3bc3f318bde34dffe62e55db08439cc0952d3d842cacae81f45fef56c1673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168165604003141$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16147808$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15380656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bühler, Bruno</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><title>Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes.</description><subject>Biocatalysis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrocarbon functionalization</subject><subject>Hydrocarbons - chemistry</subject><subject>Hydrocarbons - metabolism</subject><subject>Oxygenase</subject><subject>Oxygenases - chemistry</subject><subject>Oxygenases - metabolism</subject><subject>Process implementation</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFq3DAQQEVJaTZJPyHBl_RmR7IsWXsqYUmbwkJyaM5CHo2oFtvaSnbI9uur7Rpy7Ekg3psZHiHXjFaMMnm3q3adDxNCVVPaVJRXtG4_kBVTLS8bJfkZWWVOlUwKeU4uUtrRDK4F-0TOmeCK5v8VeX6OATClwg_7HgccJzP5MBYm7RGmVLgQi7wHzGT6w-Sh-HWw2TCxy1B4O7h5hKNgev_nn3lFPjrTJ_y8vJfk5dvDz81juX36_mNzvy1B1GIqmWs73gF3nKnOIm-scyhrFMJ2VDV8DUDXorbcqqYGAwYVc41w6IQEJlt-Sb6c5u5j-D1jmvTgE2DfmxHDnHRNJeeUqwyKEwgxpBTR6X30g4kHzag-ptQ7vaTUx5Sacp1TZu9mWTB3A9p3a2mXgdsFMAlM76IZwad3TrKmVfR4wNcThznHq8eoE3gcAa2PubG2wf_nlL8TI5eC</recordid><startdate>20040930</startdate><enddate>20040930</enddate><creator>Bühler, Bruno</creator><creator>Schmid, Andreas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20040930</creationdate><title>Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization</title><author>Bühler, Bruno ; Schmid, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-1f7b3bc3f318bde34dffe62e55db08439cc0952d3d842cacae81f45fef56c1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biocatalysis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrocarbon functionalization</topic><topic>Hydrocarbons - chemistry</topic><topic>Hydrocarbons - metabolism</topic><topic>Oxygenase</topic><topic>Oxygenases - chemistry</topic><topic>Oxygenases - metabolism</topic><topic>Process implementation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bühler, Bruno</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bühler, Bruno</au><au>Schmid, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2004-09-30</date><risdate>2004</risdate><volume>113</volume><issue>1</issue><spage>183</spage><epage>210</epage><pages>183-210</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>15380656</pmid><doi>10.1016/j.jbiotec.2004.03.027</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1656 |
ispartof | Journal of biotechnology, 2004-09, Vol.113 (1), p.183-210 |
issn | 0168-1656 1873-4863 |
language | eng |
recordid | cdi_proquest_miscellaneous_20633038 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biocatalysis Biological and medical sciences Biotechnology Biotechnology - methods Fundamental and applied biological sciences. Psychology Hydrocarbon functionalization Hydrocarbons - chemistry Hydrocarbons - metabolism Oxygenase Oxygenases - chemistry Oxygenases - metabolism Process implementation |
title | Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20implementation%20aspects%20for%20biocatalytic%20hydrocarbon%20oxyfunctionalization&rft.jtitle=Journal%20of%20biotechnology&rft.au=B%C3%BChler,%20Bruno&rft.date=2004-09-30&rft.volume=113&rft.issue=1&rft.spage=183&rft.epage=210&rft.pages=183-210&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/j.jbiotec.2004.03.027&rft_dat=%3Cproquest_cross%3E20633038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20633038&rft_id=info:pmid/15380656&rft_els_id=S0168165604003141&rfr_iscdi=true |