Biochemical characterization of Caulobacter crescentus xylose dehydrogenase

d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2018-10, Vol.118 (Pt A), p.1362-1367
Hauptverfasser: Lee, Charles C., Jordan, Douglas B., Stoller, J. Rose, Kibblewhite, Rena E., Wagschal, Kurt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1367
container_issue Pt A
container_start_page 1362
container_title International journal of biological macromolecules
container_volume 118
creator Lee, Charles C.
Jordan, Douglas B.
Stoller, J. Rose
Kibblewhite, Rena E.
Wagschal, Kurt
description d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.
doi_str_mv 10.1016/j.ijbiomac.2018.06.124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2062838240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813018318701</els_id><sourcerecordid>2062838240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</originalsourceid><addsrcrecordid>eNqFkEtP5DAQhC0EguHxF1COXJJt2xPHuS2MFhYtEhc4W360GY-SmLUTxOyv38AAV04tlaq6uj9CzilUFKj4sanCxoTYa1sxoLICUVG23CMLKpu2BAC-TxZAl7SUlMMROc55M6uipvKQHLG2rVugzYL8uQrRrrEPVneFXeuk7Ygp_NNjiEMRfbHSUxfNu1rYhNniME65eN12MWPhcL11KT7hoDOekgOvu4xnH_OEPF7_elj9Lu_ub25Xl3elXVIxlhKYMw11gmvuUFrHqMcGrNE1k8Z7zgyfDwTvW6mpq7lunGjQeMfr1oDkJ-Rit_c5xb8T5lH1Yb6r6_SAccqKgWCSS7aE2Sp2Vptizgm9ek6h12mrKKg3kGqjPkGqN5AKhJpBzsHzj47J9Oi-Yp_kZsPPnQHnT18CJpVtwMGiCwntqFwM33X8B8UCiXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062838240</pqid></control><display><type>article</type><title>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Charles C. ; Jordan, Douglas B. ; Stoller, J. Rose ; Kibblewhite, Rena E. ; Wagschal, Kurt</creator><creatorcontrib>Lee, Charles C. ; Jordan, Douglas B. ; Stoller, J. Rose ; Kibblewhite, Rena E. ; Wagschal, Kurt</creatorcontrib><description>d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2018.06.124</identifier><identifier>PMID: 29959017</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Carbohydrate Dehydrogenases - chemistry ; Carbohydrate Dehydrogenases - metabolism ; Catalysis ; Caulobacter crescentus ; Caulobacter crescentus - enzymology ; Enzyme kinetics ; NAD - chemistry ; NAD - metabolism ; Oxidation-Reduction ; Xylonolactone ; Xylose - chemistry ; Xylose - metabolism ; Xylose dehydrogenase ; Xylose utilization</subject><ispartof>International journal of biological macromolecules, 2018-10, Vol.118 (Pt A), p.1362-1367</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</citedby><cites>FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2018.06.124$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29959017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Charles C.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><creatorcontrib>Stoller, J. Rose</creatorcontrib><creatorcontrib>Kibblewhite, Rena E.</creatorcontrib><creatorcontrib>Wagschal, Kurt</creatorcontrib><title>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Carbohydrate Dehydrogenases - chemistry</subject><subject>Carbohydrate Dehydrogenases - metabolism</subject><subject>Catalysis</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - enzymology</subject><subject>Enzyme kinetics</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Xylonolactone</subject><subject>Xylose - chemistry</subject><subject>Xylose - metabolism</subject><subject>Xylose dehydrogenase</subject><subject>Xylose utilization</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtP5DAQhC0EguHxF1COXJJt2xPHuS2MFhYtEhc4W360GY-SmLUTxOyv38AAV04tlaq6uj9CzilUFKj4sanCxoTYa1sxoLICUVG23CMLKpu2BAC-TxZAl7SUlMMROc55M6uipvKQHLG2rVugzYL8uQrRrrEPVneFXeuk7Ygp_NNjiEMRfbHSUxfNu1rYhNniME65eN12MWPhcL11KT7hoDOekgOvu4xnH_OEPF7_elj9Lu_ub25Xl3elXVIxlhKYMw11gmvuUFrHqMcGrNE1k8Z7zgyfDwTvW6mpq7lunGjQeMfr1oDkJ-Rit_c5xb8T5lH1Yb6r6_SAccqKgWCSS7aE2Sp2Vptizgm9ek6h12mrKKg3kGqjPkGqN5AKhJpBzsHzj47J9Oi-Yp_kZsPPnQHnT18CJpVtwMGiCwntqFwM33X8B8UCiXg</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Lee, Charles C.</creator><creator>Jordan, Douglas B.</creator><creator>Stoller, J. Rose</creator><creator>Kibblewhite, Rena E.</creator><creator>Wagschal, Kurt</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20181015</creationdate><title>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</title><author>Lee, Charles C. ; Jordan, Douglas B. ; Stoller, J. Rose ; Kibblewhite, Rena E. ; Wagschal, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Carbohydrate Dehydrogenases - chemistry</topic><topic>Carbohydrate Dehydrogenases - metabolism</topic><topic>Catalysis</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - enzymology</topic><topic>Enzyme kinetics</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Xylonolactone</topic><topic>Xylose - chemistry</topic><topic>Xylose - metabolism</topic><topic>Xylose dehydrogenase</topic><topic>Xylose utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Charles C.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><creatorcontrib>Stoller, J. Rose</creatorcontrib><creatorcontrib>Kibblewhite, Rena E.</creatorcontrib><creatorcontrib>Wagschal, Kurt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Charles C.</au><au>Jordan, Douglas B.</au><au>Stoller, J. Rose</au><au>Kibblewhite, Rena E.</au><au>Wagschal, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2018-10-15</date><risdate>2018</risdate><volume>118</volume><issue>Pt A</issue><spage>1362</spage><epage>1367</epage><pages>1362-1367</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29959017</pmid><doi>10.1016/j.ijbiomac.2018.06.124</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2018-10, Vol.118 (Pt A), p.1362-1367
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2062838240
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Carbohydrate Dehydrogenases - chemistry
Carbohydrate Dehydrogenases - metabolism
Catalysis
Caulobacter crescentus
Caulobacter crescentus - enzymology
Enzyme kinetics
NAD - chemistry
NAD - metabolism
Oxidation-Reduction
Xylonolactone
Xylose - chemistry
Xylose - metabolism
Xylose dehydrogenase
Xylose utilization
title Biochemical characterization of Caulobacter crescentus xylose dehydrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20characterization%20of%20Caulobacter%20crescentus%20xylose%20dehydrogenase&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Lee,%20Charles%20C.&rft.date=2018-10-15&rft.volume=118&rft.issue=Pt%20A&rft.spage=1362&rft.epage=1367&rft.pages=1362-1367&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2018.06.124&rft_dat=%3Cproquest_cross%3E2062838240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062838240&rft_id=info:pmid/29959017&rft_els_id=S0141813018318701&rfr_iscdi=true