Biochemical characterization of Caulobacter crescentus xylose dehydrogenase
d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a co...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2018-10, Vol.118 (Pt A), p.1362-1367 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1367 |
---|---|
container_issue | Pt A |
container_start_page | 1362 |
container_title | International journal of biological macromolecules |
container_volume | 118 |
creator | Lee, Charles C. Jordan, Douglas B. Stoller, J. Rose Kibblewhite, Rena E. Wagschal, Kurt |
description | d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions. |
doi_str_mv | 10.1016/j.ijbiomac.2018.06.124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2062838240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813018318701</els_id><sourcerecordid>2062838240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</originalsourceid><addsrcrecordid>eNqFkEtP5DAQhC0EguHxF1COXJJt2xPHuS2MFhYtEhc4W360GY-SmLUTxOyv38AAV04tlaq6uj9CzilUFKj4sanCxoTYa1sxoLICUVG23CMLKpu2BAC-TxZAl7SUlMMROc55M6uipvKQHLG2rVugzYL8uQrRrrEPVneFXeuk7Ygp_NNjiEMRfbHSUxfNu1rYhNniME65eN12MWPhcL11KT7hoDOekgOvu4xnH_OEPF7_elj9Lu_ub25Xl3elXVIxlhKYMw11gmvuUFrHqMcGrNE1k8Z7zgyfDwTvW6mpq7lunGjQeMfr1oDkJ-Rit_c5xb8T5lH1Yb6r6_SAccqKgWCSS7aE2Sp2Vptizgm9ek6h12mrKKg3kGqjPkGqN5AKhJpBzsHzj47J9Oi-Yp_kZsPPnQHnT18CJpVtwMGiCwntqFwM33X8B8UCiXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062838240</pqid></control><display><type>article</type><title>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Charles C. ; Jordan, Douglas B. ; Stoller, J. Rose ; Kibblewhite, Rena E. ; Wagschal, Kurt</creator><creatorcontrib>Lee, Charles C. ; Jordan, Douglas B. ; Stoller, J. Rose ; Kibblewhite, Rena E. ; Wagschal, Kurt</creatorcontrib><description>d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2018.06.124</identifier><identifier>PMID: 29959017</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Carbohydrate Dehydrogenases - chemistry ; Carbohydrate Dehydrogenases - metabolism ; Catalysis ; Caulobacter crescentus ; Caulobacter crescentus - enzymology ; Enzyme kinetics ; NAD - chemistry ; NAD - metabolism ; Oxidation-Reduction ; Xylonolactone ; Xylose - chemistry ; Xylose - metabolism ; Xylose dehydrogenase ; Xylose utilization</subject><ispartof>International journal of biological macromolecules, 2018-10, Vol.118 (Pt A), p.1362-1367</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</citedby><cites>FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2018.06.124$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29959017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Charles C.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><creatorcontrib>Stoller, J. Rose</creatorcontrib><creatorcontrib>Kibblewhite, Rena E.</creatorcontrib><creatorcontrib>Wagschal, Kurt</creatorcontrib><title>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Carbohydrate Dehydrogenases - chemistry</subject><subject>Carbohydrate Dehydrogenases - metabolism</subject><subject>Catalysis</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - enzymology</subject><subject>Enzyme kinetics</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Xylonolactone</subject><subject>Xylose - chemistry</subject><subject>Xylose - metabolism</subject><subject>Xylose dehydrogenase</subject><subject>Xylose utilization</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtP5DAQhC0EguHxF1COXJJt2xPHuS2MFhYtEhc4W360GY-SmLUTxOyv38AAV04tlaq6uj9CzilUFKj4sanCxoTYa1sxoLICUVG23CMLKpu2BAC-TxZAl7SUlMMROc55M6uipvKQHLG2rVugzYL8uQrRrrEPVneFXeuk7Ygp_NNjiEMRfbHSUxfNu1rYhNniME65eN12MWPhcL11KT7hoDOekgOvu4xnH_OEPF7_elj9Lu_ub25Xl3elXVIxlhKYMw11gmvuUFrHqMcGrNE1k8Z7zgyfDwTvW6mpq7lunGjQeMfr1oDkJ-Rit_c5xb8T5lH1Yb6r6_SAccqKgWCSS7aE2Sp2Vptizgm9ek6h12mrKKg3kGqjPkGqN5AKhJpBzsHzj47J9Oi-Yp_kZsPPnQHnT18CJpVtwMGiCwntqFwM33X8B8UCiXg</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Lee, Charles C.</creator><creator>Jordan, Douglas B.</creator><creator>Stoller, J. Rose</creator><creator>Kibblewhite, Rena E.</creator><creator>Wagschal, Kurt</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20181015</creationdate><title>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</title><author>Lee, Charles C. ; Jordan, Douglas B. ; Stoller, J. Rose ; Kibblewhite, Rena E. ; Wagschal, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-802db71d63a3de8cd21fe70cba528bff32b32990ff98a1d53a7d67ebfd359b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Carbohydrate Dehydrogenases - chemistry</topic><topic>Carbohydrate Dehydrogenases - metabolism</topic><topic>Catalysis</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - enzymology</topic><topic>Enzyme kinetics</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Xylonolactone</topic><topic>Xylose - chemistry</topic><topic>Xylose - metabolism</topic><topic>Xylose dehydrogenase</topic><topic>Xylose utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Charles C.</creatorcontrib><creatorcontrib>Jordan, Douglas B.</creatorcontrib><creatorcontrib>Stoller, J. Rose</creatorcontrib><creatorcontrib>Kibblewhite, Rena E.</creatorcontrib><creatorcontrib>Wagschal, Kurt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Charles C.</au><au>Jordan, Douglas B.</au><au>Stoller, J. Rose</au><au>Kibblewhite, Rena E.</au><au>Wagschal, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical characterization of Caulobacter crescentus xylose dehydrogenase</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2018-10-15</date><risdate>2018</risdate><volume>118</volume><issue>Pt A</issue><spage>1362</spage><epage>1367</epage><pages>1362-1367</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>d-Xylose sugar is a common component of hemicellulose, the second largest fraction of biomass. Many groups have developed biological conversions of d-xylose to value-added products by recombinant expression of the xylose dehydrogenase enzyme from Caulobacter crescentus. This enzyme uses NAD+ as a cofactor to oxidize d-xylose to d-xylono-1,4-lactone. A detailed understanding of the mechanism of this enzyme could be useful in engineering more efficient versions. Therefore, we have conducted kinetic studies including both the forward and reverse physiological reactions of this enzyme. We demonstrate that the enzyme's substrate binding mode follows a sequential steady state ordered mechanism with NAD+ or NADH binding first. Furthermore, the kcat of the reaction in the direction of NAD+ reduction is 10-fold higher than that of the reverse reaction. From rapid reaction studies, we demonstrate the binding of NAD+ and NADH to the free enzyme and that hydride transfer occurs in a fast step followed by a much slower steady state. We calculate that the dissociations of the sugar products from the enzyme complexes are the major rate limiting steps in both directions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29959017</pmid><doi>10.1016/j.ijbiomac.2018.06.124</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2018-10, Vol.118 (Pt A), p.1362-1367 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2062838240 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - metabolism Carbohydrate Dehydrogenases - chemistry Carbohydrate Dehydrogenases - metabolism Catalysis Caulobacter crescentus Caulobacter crescentus - enzymology Enzyme kinetics NAD - chemistry NAD - metabolism Oxidation-Reduction Xylonolactone Xylose - chemistry Xylose - metabolism Xylose dehydrogenase Xylose utilization |
title | Biochemical characterization of Caulobacter crescentus xylose dehydrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20characterization%20of%20Caulobacter%20crescentus%20xylose%20dehydrogenase&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Lee,%20Charles%20C.&rft.date=2018-10-15&rft.volume=118&rft.issue=Pt%20A&rft.spage=1362&rft.epage=1367&rft.pages=1362-1367&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2018.06.124&rft_dat=%3Cproquest_cross%3E2062838240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062838240&rft_id=info:pmid/29959017&rft_els_id=S0141813018318701&rfr_iscdi=true |