Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model
In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2018-09, Vol.25 (25), p.25551-25564 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25564 |
---|---|
container_issue | 25 |
container_start_page | 25551 |
container_title | Environmental science and pollution research international |
container_volume | 25 |
creator | González-Costa, Juan J. Reigosa-Roger, Manuel J. Matías, José M. Fernández-Covelo, Emma |
description | In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process. |
doi_str_mv | 10.1007/s11356-018-2101-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2062834637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061708637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</originalsourceid><addsrcrecordid>eNp1kU1rFTEYhYNY7LX6A9xIwE0Xd2q-Jpm4KxdthaIudOMm5OOddurM5JrMVPo__MGmM20FQUJ4CXnOOfAehF5RckIJUW8zpbyWFaFNxSihlXiCNlRSUSmh9VO0IVqIinIhDtHznK8JYUQz9QwdMq1rrXi9Qb9PR9vf5i7j2OLpCrANOab91MUR2zHgBBOMy2uIAfqM25jwLmzxLpU7b_Gnbou_uO0Cfx-LRYrz5RUeYU62L2P6FdOP_A5n6MEvRiXoxqbOuh7yIvNx2MPUTd0NrCkv0EFr-wwv7-cR-vbh_dfdeXXx-ezj7vSi8oLSqZKuIU0IzkkleOudq70T5WguuOSUtbapbatVW5YjlfeN1YxzK4i1Mmge-BE6Xn33Kf6cIU9m6LKHvrcjxDkbRiRruJBcFfTNP-h1nFPZ3UJRRZqVoivlU8w5QWv2qRtsujWUmLvKzFqZKZWZu8qMKJrX986zGyA8Kh46KgBbgVy-xktIf6P_7_oH7uyhVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061708637</pqid></control><display><type>article</type><title>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>González-Costa, Juan J. ; Reigosa-Roger, Manuel J. ; Matías, José M. ; Fernández-Covelo, Emma</creator><creatorcontrib>González-Costa, Juan J. ; Reigosa-Roger, Manuel J. ; Matías, José M. ; Fernández-Covelo, Emma</creatorcontrib><description>In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-018-2101-4</identifier><identifier>PMID: 29959735</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Cadmium ; Chromium ; Copper ; Crystallization ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Monitoring - methods ; Environmental science ; Heavy metals ; Kaolinite ; Lead ; Mathematical models ; Metals, Heavy - analysis ; Metals, Heavy - chemistry ; Mica ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Nickel ; Oxides ; Plagioclase ; Regression analysis ; Research Article ; Retention ; Soil Pollutants - analysis ; Soil Pollutants - chemistry ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018-09, Vol.25 (25), p.25551-25564</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</citedby><cites>FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</cites><orcidid>0000-0003-0527-1849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-018-2101-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-018-2101-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29959735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Costa, Juan J.</creatorcontrib><creatorcontrib>Reigosa-Roger, Manuel J.</creatorcontrib><creatorcontrib>Matías, José M.</creatorcontrib><creatorcontrib>Fernández-Covelo, Emma</creatorcontrib><title>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.</description><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Cadmium</subject><subject>Chromium</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental science</subject><subject>Heavy metals</subject><subject>Kaolinite</subject><subject>Lead</subject><subject>Mathematical models</subject><subject>Metals, Heavy - analysis</subject><subject>Metals, Heavy - chemistry</subject><subject>Mica</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nickel</subject><subject>Oxides</subject><subject>Plagioclase</subject><subject>Regression analysis</subject><subject>Research Article</subject><subject>Retention</subject><subject>Soil Pollutants - analysis</subject><subject>Soil Pollutants - chemistry</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEYhYNY7LX6A9xIwE0Xd2q-Jpm4KxdthaIudOMm5OOddurM5JrMVPo__MGmM20FQUJ4CXnOOfAehF5RckIJUW8zpbyWFaFNxSihlXiCNlRSUSmh9VO0IVqIinIhDtHznK8JYUQz9QwdMq1rrXi9Qb9PR9vf5i7j2OLpCrANOab91MUR2zHgBBOMy2uIAfqM25jwLmzxLpU7b_Gnbou_uO0Cfx-LRYrz5RUeYU62L2P6FdOP_A5n6MEvRiXoxqbOuh7yIvNx2MPUTd0NrCkv0EFr-wwv7-cR-vbh_dfdeXXx-ezj7vSi8oLSqZKuIU0IzkkleOudq70T5WguuOSUtbapbatVW5YjlfeN1YxzK4i1Mmge-BE6Xn33Kf6cIU9m6LKHvrcjxDkbRiRruJBcFfTNP-h1nFPZ3UJRRZqVoivlU8w5QWv2qRtsujWUmLvKzFqZKZWZu8qMKJrX986zGyA8Kh46KgBbgVy-xktIf6P_7_oH7uyhVw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>González-Costa, Juan J.</creator><creator>Reigosa-Roger, Manuel J.</creator><creator>Matías, José M.</creator><creator>Fernández-Covelo, Emma</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0527-1849</orcidid></search><sort><creationdate>20180901</creationdate><title>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</title><author>González-Costa, Juan J. ; Reigosa-Roger, Manuel J. ; Matías, José M. ; Fernández-Covelo, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Cadmium</topic><topic>Chromium</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental science</topic><topic>Heavy metals</topic><topic>Kaolinite</topic><topic>Lead</topic><topic>Mathematical models</topic><topic>Metals, Heavy - analysis</topic><topic>Metals, Heavy - chemistry</topic><topic>Mica</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nickel</topic><topic>Oxides</topic><topic>Plagioclase</topic><topic>Regression analysis</topic><topic>Research Article</topic><topic>Retention</topic><topic>Soil Pollutants - analysis</topic><topic>Soil Pollutants - chemistry</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Costa, Juan J.</creatorcontrib><creatorcontrib>Reigosa-Roger, Manuel J.</creatorcontrib><creatorcontrib>Matías, José M.</creatorcontrib><creatorcontrib>Fernández-Covelo, Emma</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Costa, Juan J.</au><au>Reigosa-Roger, Manuel J.</au><au>Matías, José M.</au><au>Fernández-Covelo, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>25</volume><issue>25</issue><spage>25551</spage><epage>25564</epage><pages>25551-25564</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29959735</pmid><doi>10.1007/s11356-018-2101-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0527-1849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2018-09, Vol.25 (25), p.25551-25564 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2062834637 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adsorption Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Cadmium Chromium Copper Crystallization Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental Monitoring - methods Environmental science Heavy metals Kaolinite Lead Mathematical models Metals, Heavy - analysis Metals, Heavy - chemistry Mica Models, Theoretical Neural networks Neural Networks (Computer) Nickel Oxides Plagioclase Regression analysis Research Article Retention Soil Pollutants - analysis Soil Pollutants - chemistry Waste Water Technology Water Management Water Pollution Control |
title | Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20adsorption%20and%20retention%20models%20for%20Cd,%20Cr,%20Cu,%20Ni,%20Pb,%20and%20Zn%20through%20neural%20networks:%20selection%20of%20variables%20and%20competitive%20model&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Gonz%C3%A1lez-Costa,%20Juan%20J.&rft.date=2018-09-01&rft.volume=25&rft.issue=25&rft.spage=25551&rft.epage=25564&rft.pages=25551-25564&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-018-2101-4&rft_dat=%3Cproquest_cross%3E2061708637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061708637&rft_id=info:pmid/29959735&rfr_iscdi=true |