Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model

In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-09, Vol.25 (25), p.25551-25564
Hauptverfasser: González-Costa, Juan J., Reigosa-Roger, Manuel J., Matías, José M., Fernández-Covelo, Emma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25564
container_issue 25
container_start_page 25551
container_title Environmental science and pollution research international
container_volume 25
creator González-Costa, Juan J.
Reigosa-Roger, Manuel J.
Matías, José M.
Fernández-Covelo, Emma
description In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.
doi_str_mv 10.1007/s11356-018-2101-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2062834637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061708637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</originalsourceid><addsrcrecordid>eNp1kU1rFTEYhYNY7LX6A9xIwE0Xd2q-Jpm4KxdthaIudOMm5OOddurM5JrMVPo__MGmM20FQUJ4CXnOOfAehF5RckIJUW8zpbyWFaFNxSihlXiCNlRSUSmh9VO0IVqIinIhDtHznK8JYUQz9QwdMq1rrXi9Qb9PR9vf5i7j2OLpCrANOab91MUR2zHgBBOMy2uIAfqM25jwLmzxLpU7b_Gnbou_uO0Cfx-LRYrz5RUeYU62L2P6FdOP_A5n6MEvRiXoxqbOuh7yIvNx2MPUTd0NrCkv0EFr-wwv7-cR-vbh_dfdeXXx-ezj7vSi8oLSqZKuIU0IzkkleOudq70T5WguuOSUtbapbatVW5YjlfeN1YxzK4i1Mmge-BE6Xn33Kf6cIU9m6LKHvrcjxDkbRiRruJBcFfTNP-h1nFPZ3UJRRZqVoivlU8w5QWv2qRtsujWUmLvKzFqZKZWZu8qMKJrX986zGyA8Kh46KgBbgVy-xktIf6P_7_oH7uyhVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061708637</pqid></control><display><type>article</type><title>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>González-Costa, Juan J. ; Reigosa-Roger, Manuel J. ; Matías, José M. ; Fernández-Covelo, Emma</creator><creatorcontrib>González-Costa, Juan J. ; Reigosa-Roger, Manuel J. ; Matías, José M. ; Fernández-Covelo, Emma</creatorcontrib><description>In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-018-2101-4</identifier><identifier>PMID: 29959735</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Cadmium ; Chromium ; Copper ; Crystallization ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Monitoring - methods ; Environmental science ; Heavy metals ; Kaolinite ; Lead ; Mathematical models ; Metals, Heavy - analysis ; Metals, Heavy - chemistry ; Mica ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Nickel ; Oxides ; Plagioclase ; Regression analysis ; Research Article ; Retention ; Soil Pollutants - analysis ; Soil Pollutants - chemistry ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018-09, Vol.25 (25), p.25551-25564</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</citedby><cites>FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</cites><orcidid>0000-0003-0527-1849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-018-2101-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-018-2101-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29959735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Costa, Juan J.</creatorcontrib><creatorcontrib>Reigosa-Roger, Manuel J.</creatorcontrib><creatorcontrib>Matías, José M.</creatorcontrib><creatorcontrib>Fernández-Covelo, Emma</creatorcontrib><title>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.</description><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Cadmium</subject><subject>Chromium</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental science</subject><subject>Heavy metals</subject><subject>Kaolinite</subject><subject>Lead</subject><subject>Mathematical models</subject><subject>Metals, Heavy - analysis</subject><subject>Metals, Heavy - chemistry</subject><subject>Mica</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nickel</subject><subject>Oxides</subject><subject>Plagioclase</subject><subject>Regression analysis</subject><subject>Research Article</subject><subject>Retention</subject><subject>Soil Pollutants - analysis</subject><subject>Soil Pollutants - chemistry</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEYhYNY7LX6A9xIwE0Xd2q-Jpm4KxdthaIudOMm5OOddurM5JrMVPo__MGmM20FQUJ4CXnOOfAehF5RckIJUW8zpbyWFaFNxSihlXiCNlRSUSmh9VO0IVqIinIhDtHznK8JYUQz9QwdMq1rrXi9Qb9PR9vf5i7j2OLpCrANOab91MUR2zHgBBOMy2uIAfqM25jwLmzxLpU7b_Gnbou_uO0Cfx-LRYrz5RUeYU62L2P6FdOP_A5n6MEvRiXoxqbOuh7yIvNx2MPUTd0NrCkv0EFr-wwv7-cR-vbh_dfdeXXx-ezj7vSi8oLSqZKuIU0IzkkleOudq70T5WguuOSUtbapbatVW5YjlfeN1YxzK4i1Mmge-BE6Xn33Kf6cIU9m6LKHvrcjxDkbRiRruJBcFfTNP-h1nFPZ3UJRRZqVoivlU8w5QWv2qRtsujWUmLvKzFqZKZWZu8qMKJrX986zGyA8Kh46KgBbgVy-xktIf6P_7_oH7uyhVw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>González-Costa, Juan J.</creator><creator>Reigosa-Roger, Manuel J.</creator><creator>Matías, José M.</creator><creator>Fernández-Covelo, Emma</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0527-1849</orcidid></search><sort><creationdate>20180901</creationdate><title>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</title><author>González-Costa, Juan J. ; Reigosa-Roger, Manuel J. ; Matías, José M. ; Fernández-Covelo, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6b808ddbb6743fcbb5cb4b4b93436312fa85af97f21067cc8a9233a40aa6d93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Cadmium</topic><topic>Chromium</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental science</topic><topic>Heavy metals</topic><topic>Kaolinite</topic><topic>Lead</topic><topic>Mathematical models</topic><topic>Metals, Heavy - analysis</topic><topic>Metals, Heavy - chemistry</topic><topic>Mica</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nickel</topic><topic>Oxides</topic><topic>Plagioclase</topic><topic>Regression analysis</topic><topic>Research Article</topic><topic>Retention</topic><topic>Soil Pollutants - analysis</topic><topic>Soil Pollutants - chemistry</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Costa, Juan J.</creatorcontrib><creatorcontrib>Reigosa-Roger, Manuel J.</creatorcontrib><creatorcontrib>Matías, José M.</creatorcontrib><creatorcontrib>Fernández-Covelo, Emma</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Costa, Juan J.</au><au>Reigosa-Roger, Manuel J.</au><au>Matías, José M.</au><au>Fernández-Covelo, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>25</volume><issue>25</issue><spage>25551</spage><epage>25564</epage><pages>25551-25564</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29959735</pmid><doi>10.1007/s11356-018-2101-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0527-1849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2018-09, Vol.25 (25), p.25551-25564
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2062834637
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adsorption
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Cadmium
Chromium
Copper
Crystallization
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental Monitoring - methods
Environmental science
Heavy metals
Kaolinite
Lead
Mathematical models
Metals, Heavy - analysis
Metals, Heavy - chemistry
Mica
Models, Theoretical
Neural networks
Neural Networks (Computer)
Nickel
Oxides
Plagioclase
Regression analysis
Research Article
Retention
Soil Pollutants - analysis
Soil Pollutants - chemistry
Waste Water Technology
Water Management
Water Pollution Control
title Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20adsorption%20and%20retention%20models%20for%20Cd,%20Cr,%20Cu,%20Ni,%20Pb,%20and%20Zn%20through%20neural%20networks:%20selection%20of%20variables%20and%20competitive%20model&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Gonz%C3%A1lez-Costa,%20Juan%20J.&rft.date=2018-09-01&rft.volume=25&rft.issue=25&rft.spage=25551&rft.epage=25564&rft.pages=25551-25564&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-018-2101-4&rft_dat=%3Cproquest_cross%3E2061708637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061708637&rft_id=info:pmid/29959735&rfr_iscdi=true