Decoding the gene coexpression network underlying the ability of Gevuina avellana to live in diverse light conditions

Gevuina avellana(Proteaceae) is a typical tree from the South American temperate rainforest. Although this species mostly regenerates in shaded understories, it exhibits an exceptional ecological breadth, being able to live under a wide range of light conditions. Here we studied the genetic basis th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2018-10, Vol.220 (1), p.278-287
Hauptverfasser: Ostria‐Gallardo, Enrique, Ranjan, Aashish, Ichihashi, Yasunori, Corcuera, Luis J., Sinha, Neelima R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 1
container_start_page 278
container_title The New phytologist
container_volume 220
creator Ostria‐Gallardo, Enrique
Ranjan, Aashish
Ichihashi, Yasunori
Corcuera, Luis J.
Sinha, Neelima R.
description Gevuina avellana(Proteaceae) is a typical tree from the South American temperate rainforest. Although this species mostly regenerates in shaded understories, it exhibits an exceptional ecological breadth, being able to live under a wide range of light conditions. Here we studied the genetic basis that underlies physiological acclimation of the photosynthetic responses of G. avellana under contrasting light conditions. We analyzed carbon assimilation and light energy used for photochemical processes in plants acclimated to contrasting light conditions. Also, we used a transcriptional profile of leaf primordia from G. avellana saplings growing under different light environments in their natural habitat, to identify the gene coexpression network underpinning photosynthetic performance and light-related processes. The photosynthetic parameters revealed optimal performance regardless of light conditions. Strikingly, the mechanism involved in dissipation of excess light energy showed no significant differences between high- and low-light-acclimated plants. The gene coexpression network defined a community structure consistent with the photochemical responses, including genes involved mainly in assembly and functioning of photosystems, photoprotection, and retrograde signaling. This ecophysiological genomics approach improves our understanding of the intraspecific variability that allows G. avellana to have optimal photochemical and photoprotective mechanisms in the diverse light habitats it encounters in nature.
doi_str_mv 10.1111/nph.15278
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2062833338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90024551</jstor_id><sourcerecordid>90024551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-68d3e6c0800108c7e8c4cab782142c439671ba6636adcda5427b6930bb0723963</originalsourceid><addsrcrecordid>eNp1kU9PGzEQxa2qqATaQz8AlaVe4BDwn13be6wCBSREe2il3lZe7yRx2NjB3g3k2zMlhAMSc5kZ-TdPT36EfOXslGOdhdX8lJdCmw9kxAtVjQ2X-iMZMSbMWBXq3z45yHnBGKtKJT6RfVHhIIUekeEcXGx9mNF-DnQGAaiL8LhKkLOPgQboH2K6o0NoIXWbHWgb3_l-Q-OUXsJ68MFSu4auszj0kXZ-DdQH2mJPGXCfzXsUDq3vUTV_JntT22X48tIPyd-fF38mV-ObX5fXkx83Y1dohdZNK0E5ZhjjzDgNxhXONtoIXghXyEpp3lilpLKta21ZCN2oSrKmYVrgqzwkx1vdVYr3A-S-Xvrsnn1CHHItmBJGYhlEv79BF3FIAd0hVZUc_TCN1MmWcinmnGBar5Jf2rSpOav_Z1FjFvVzFsh-e1EcmiW0r-Tu8xE42wIPvoPN-0r17e-rneTR9mKR-5heLyoMuihLLp8AIpadEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095176807</pqid></control><display><type>article</type><title>Decoding the gene coexpression network underlying the ability of Gevuina avellana to live in diverse light conditions</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ostria‐Gallardo, Enrique ; Ranjan, Aashish ; Ichihashi, Yasunori ; Corcuera, Luis J. ; Sinha, Neelima R.</creator><creatorcontrib>Ostria‐Gallardo, Enrique ; Ranjan, Aashish ; Ichihashi, Yasunori ; Corcuera, Luis J. ; Sinha, Neelima R.</creatorcontrib><description>Gevuina avellana(Proteaceae) is a typical tree from the South American temperate rainforest. Although this species mostly regenerates in shaded understories, it exhibits an exceptional ecological breadth, being able to live under a wide range of light conditions. Here we studied the genetic basis that underlies physiological acclimation of the photosynthetic responses of G. avellana under contrasting light conditions. We analyzed carbon assimilation and light energy used for photochemical processes in plants acclimated to contrasting light conditions. Also, we used a transcriptional profile of leaf primordia from G. avellana saplings growing under different light environments in their natural habitat, to identify the gene coexpression network underpinning photosynthetic performance and light-related processes. The photosynthetic parameters revealed optimal performance regardless of light conditions. Strikingly, the mechanism involved in dissipation of excess light energy showed no significant differences between high- and low-light-acclimated plants. The gene coexpression network defined a community structure consistent with the photochemical responses, including genes involved mainly in assembly and functioning of photosystems, photoprotection, and retrograde signaling. This ecophysiological genomics approach improves our understanding of the intraspecific variability that allows G. avellana to have optimal photochemical and photoprotective mechanisms in the diverse light habitats it encounters in nature.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15278</identifier><identifier>PMID: 29956327</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Acclimation ; Acclimatization ; Carbon fixation ; Community structure ; Decoding ; Ecophysiology ; Energy ; gene coexpression network ; Genes ; Genomics ; Gevuina avellana ; Glaucoma avellana ; Light ; light acclimation ; Photochemicals ; Photochemistry ; Photosynthesis ; Photosystems ; Primordia ; Process parameters ; Rainforests ; Retrograde transport ; temperate rainforest ; Transcription</subject><ispartof>The New phytologist, 2018-10, Vol.220 (1), p.278-287</ispartof><rights>2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2018 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-68d3e6c0800108c7e8c4cab782142c439671ba6636adcda5427b6930bb0723963</citedby><cites>FETCH-LOGICAL-c4768-68d3e6c0800108c7e8c4cab782142c439671ba6636adcda5427b6930bb0723963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90024551$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90024551$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29956327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostria‐Gallardo, Enrique</creatorcontrib><creatorcontrib>Ranjan, Aashish</creatorcontrib><creatorcontrib>Ichihashi, Yasunori</creatorcontrib><creatorcontrib>Corcuera, Luis J.</creatorcontrib><creatorcontrib>Sinha, Neelima R.</creatorcontrib><title>Decoding the gene coexpression network underlying the ability of Gevuina avellana to live in diverse light conditions</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Gevuina avellana(Proteaceae) is a typical tree from the South American temperate rainforest. Although this species mostly regenerates in shaded understories, it exhibits an exceptional ecological breadth, being able to live under a wide range of light conditions. Here we studied the genetic basis that underlies physiological acclimation of the photosynthetic responses of G. avellana under contrasting light conditions. We analyzed carbon assimilation and light energy used for photochemical processes in plants acclimated to contrasting light conditions. Also, we used a transcriptional profile of leaf primordia from G. avellana saplings growing under different light environments in their natural habitat, to identify the gene coexpression network underpinning photosynthetic performance and light-related processes. The photosynthetic parameters revealed optimal performance regardless of light conditions. Strikingly, the mechanism involved in dissipation of excess light energy showed no significant differences between high- and low-light-acclimated plants. The gene coexpression network defined a community structure consistent with the photochemical responses, including genes involved mainly in assembly and functioning of photosystems, photoprotection, and retrograde signaling. This ecophysiological genomics approach improves our understanding of the intraspecific variability that allows G. avellana to have optimal photochemical and photoprotective mechanisms in the diverse light habitats it encounters in nature.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Carbon fixation</subject><subject>Community structure</subject><subject>Decoding</subject><subject>Ecophysiology</subject><subject>Energy</subject><subject>gene coexpression network</subject><subject>Genes</subject><subject>Genomics</subject><subject>Gevuina avellana</subject><subject>Glaucoma avellana</subject><subject>Light</subject><subject>light acclimation</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>Photosystems</subject><subject>Primordia</subject><subject>Process parameters</subject><subject>Rainforests</subject><subject>Retrograde transport</subject><subject>temperate rainforest</subject><subject>Transcription</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9PGzEQxa2qqATaQz8AlaVe4BDwn13be6wCBSREe2il3lZe7yRx2NjB3g3k2zMlhAMSc5kZ-TdPT36EfOXslGOdhdX8lJdCmw9kxAtVjQ2X-iMZMSbMWBXq3z45yHnBGKtKJT6RfVHhIIUekeEcXGx9mNF-DnQGAaiL8LhKkLOPgQboH2K6o0NoIXWbHWgb3_l-Q-OUXsJ68MFSu4auszj0kXZ-DdQH2mJPGXCfzXsUDq3vUTV_JntT22X48tIPyd-fF38mV-ObX5fXkx83Y1dohdZNK0E5ZhjjzDgNxhXONtoIXghXyEpp3lilpLKta21ZCN2oSrKmYVrgqzwkx1vdVYr3A-S-Xvrsnn1CHHItmBJGYhlEv79BF3FIAd0hVZUc_TCN1MmWcinmnGBar5Jf2rSpOav_Z1FjFvVzFsh-e1EcmiW0r-Tu8xE42wIPvoPN-0r17e-rneTR9mKR-5heLyoMuihLLp8AIpadEg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ostria‐Gallardo, Enrique</creator><creator>Ranjan, Aashish</creator><creator>Ichihashi, Yasunori</creator><creator>Corcuera, Luis J.</creator><creator>Sinha, Neelima R.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201810</creationdate><title>Decoding the gene coexpression network underlying the ability of Gevuina avellana to live in diverse light conditions</title><author>Ostria‐Gallardo, Enrique ; Ranjan, Aashish ; Ichihashi, Yasunori ; Corcuera, Luis J. ; Sinha, Neelima R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-68d3e6c0800108c7e8c4cab782142c439671ba6636adcda5427b6930bb0723963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Carbon fixation</topic><topic>Community structure</topic><topic>Decoding</topic><topic>Ecophysiology</topic><topic>Energy</topic><topic>gene coexpression network</topic><topic>Genes</topic><topic>Genomics</topic><topic>Gevuina avellana</topic><topic>Glaucoma avellana</topic><topic>Light</topic><topic>light acclimation</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>Photosystems</topic><topic>Primordia</topic><topic>Process parameters</topic><topic>Rainforests</topic><topic>Retrograde transport</topic><topic>temperate rainforest</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostria‐Gallardo, Enrique</creatorcontrib><creatorcontrib>Ranjan, Aashish</creatorcontrib><creatorcontrib>Ichihashi, Yasunori</creatorcontrib><creatorcontrib>Corcuera, Luis J.</creatorcontrib><creatorcontrib>Sinha, Neelima R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostria‐Gallardo, Enrique</au><au>Ranjan, Aashish</au><au>Ichihashi, Yasunori</au><au>Corcuera, Luis J.</au><au>Sinha, Neelima R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the gene coexpression network underlying the ability of Gevuina avellana to live in diverse light conditions</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2018-10</date><risdate>2018</risdate><volume>220</volume><issue>1</issue><spage>278</spage><epage>287</epage><pages>278-287</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Gevuina avellana(Proteaceae) is a typical tree from the South American temperate rainforest. Although this species mostly regenerates in shaded understories, it exhibits an exceptional ecological breadth, being able to live under a wide range of light conditions. Here we studied the genetic basis that underlies physiological acclimation of the photosynthetic responses of G. avellana under contrasting light conditions. We analyzed carbon assimilation and light energy used for photochemical processes in plants acclimated to contrasting light conditions. Also, we used a transcriptional profile of leaf primordia from G. avellana saplings growing under different light environments in their natural habitat, to identify the gene coexpression network underpinning photosynthetic performance and light-related processes. The photosynthetic parameters revealed optimal performance regardless of light conditions. Strikingly, the mechanism involved in dissipation of excess light energy showed no significant differences between high- and low-light-acclimated plants. The gene coexpression network defined a community structure consistent with the photochemical responses, including genes involved mainly in assembly and functioning of photosystems, photoprotection, and retrograde signaling. This ecophysiological genomics approach improves our understanding of the intraspecific variability that allows G. avellana to have optimal photochemical and photoprotective mechanisms in the diverse light habitats it encounters in nature.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>29956327</pmid><doi>10.1111/nph.15278</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2018-10, Vol.220 (1), p.278-287
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2062833338
source Jstor Complete Legacy; Wiley Free Content; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Acclimation
Acclimatization
Carbon fixation
Community structure
Decoding
Ecophysiology
Energy
gene coexpression network
Genes
Genomics
Gevuina avellana
Glaucoma avellana
Light
light acclimation
Photochemicals
Photochemistry
Photosynthesis
Photosystems
Primordia
Process parameters
Rainforests
Retrograde transport
temperate rainforest
Transcription
title Decoding the gene coexpression network underlying the ability of Gevuina avellana to live in diverse light conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20gene%20coexpression%20network%20underlying%20the%20ability%20of%20Gevuina%20avellana%20to%20live%20in%20diverse%20light%20conditions&rft.jtitle=The%20New%20phytologist&rft.au=Ostria%E2%80%90Gallardo,%20Enrique&rft.date=2018-10&rft.volume=220&rft.issue=1&rft.spage=278&rft.epage=287&rft.pages=278-287&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15278&rft_dat=%3Cjstor_proqu%3E90024551%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095176807&rft_id=info:pmid/29956327&rft_jstor_id=90024551&rfr_iscdi=true