Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character
DNA nanotubes can template the growth of nanowires 1 , orient transmembrane proteins for nuclear magnetic resonance determination 2 , and can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers 3 . Current methods for the construction of DNA nanotubes resu...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2009-06, Vol.4 (6), p.349-352 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 6 |
container_start_page | 349 |
container_title | Nature nanotechnology |
container_volume | 4 |
creator | Aldaye, Faisal A. Lo, Pik Kwan Karam, Pierre McLaughlin, Christopher K. Cosa, Gonzalo Sleiman, Hanadi F. |
description | DNA nanotubes can template the growth of nanowires
1
, orient transmembrane proteins for nuclear magnetic resonance determination
2
, and can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers
3
. Current methods for the construction of DNA nanotubes result in symmetrical and cylindrical assemblies that are entirely double-stranded
2
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here, we report a modular approach to DNA nanotube synthesis that provides access to geometrically well-defined triangular and square-shaped DNA nanotubes. We also construct the first nanotube assemblies that can exist in double- and single-stranded forms with significantly different stiffness. This approach allows for parameters such as geometry, stiffness, and single- or double-stranded character to be fine-tuned, and could enable the creation of designer nanotubes for a range of applications, including the growth of nanowires of controlled shape, the loading and release of cargo, and the real-time modulation of stiffness and persistence length within DNA interconnects.
DNA nanotubes can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers. Researchers have now reported a modular approach to DNA nanotube synthesis that can create geometrically well-defined triangular and square tubes. The method allows parameters such as geometry, stiffness and single- or double-stranded character to be tuned, and could provide access to designer nanotubes for a range of applications. |
doi_str_mv | 10.1038/nnano.2009.72 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20626501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476743220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-8553dd4e43dbff1c99905c740ef54ad97c8bd23064ad3aa16f72efae3558d36b3</originalsourceid><addsrcrecordid>eNp1kU1vFSEUhomxsbW67NYQTdzNlc8Blk3V2qQfm7omDJy5vc1cqDAs-u_LeG9s0tgVh_M-eSB5ETqhZEUJ199idDGtGCFmpdgbdESV0B3nRr79N2t1iN6Xck-IZIaJd-iQGmE0N-IIDVcp1Mll7FMsc65-3qSI04i_X5_iRT3XAcqymGt0wwR4DWkLc37ELgZcNnE9QYdTxiHVFndN0gII2N-57PwM-QM6GN1U4OP-PEa_f_64PfvVXd6cX5ydXnZeaDZ3WkoeggDBwzCO1BtjiPRKEBilcMEor4fAOOnbhTtH-1ExGB1wKXXg_cCP0ded9yGnPxXKbLeb4mGaXIRUi2WkZ70ktIGfX4D3qebY_mZ1b7ShjLEGfXkNYkL1SnDGSKO6HeVzKiXDaB_yZuvyo6XELv3Yv_3YpR-rFuunvbUOWwjP9L6QBqx2QGlRXEN-fvb_xifWXZvj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476743220</pqid></control><display><type>article</type><title>Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Aldaye, Faisal A. ; Lo, Pik Kwan ; Karam, Pierre ; McLaughlin, Christopher K. ; Cosa, Gonzalo ; Sleiman, Hanadi F.</creator><creatorcontrib>Aldaye, Faisal A. ; Lo, Pik Kwan ; Karam, Pierre ; McLaughlin, Christopher K. ; Cosa, Gonzalo ; Sleiman, Hanadi F.</creatorcontrib><description>DNA nanotubes can template the growth of nanowires
1
, orient transmembrane proteins for nuclear magnetic resonance determination
2
, and can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers
3
. Current methods for the construction of DNA nanotubes result in symmetrical and cylindrical assemblies that are entirely double-stranded
2
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here, we report a modular approach to DNA nanotube synthesis that provides access to geometrically well-defined triangular and square-shaped DNA nanotubes. We also construct the first nanotube assemblies that can exist in double- and single-stranded forms with significantly different stiffness. This approach allows for parameters such as geometry, stiffness, and single- or double-stranded character to be fine-tuned, and could enable the creation of designer nanotubes for a range of applications, including the growth of nanowires of controlled shape, the loading and release of cargo, and the real-time modulation of stiffness and persistence length within DNA interconnects.
DNA nanotubes can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers. Researchers have now reported a modular approach to DNA nanotube synthesis that can create geometrically well-defined triangular and square tubes. The method allows parameters such as geometry, stiffness and single- or double-stranded character to be tuned, and could provide access to designer nanotubes for a range of applications.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2009.72</identifier><identifier>PMID: 19498394</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Assemblies ; Chemistry and Materials Science ; Construction methods ; Current carriers ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA biosynthesis ; DNA, Circular - chemistry ; DNA, Single-Stranded - chemistry ; Drug carriers ; Drug delivery ; Geometry ; Interconnections ; letter ; Materials Science ; Membrane proteins ; Microscopy, Atomic Force ; Modular construction ; Molecular motors ; Nanotechnology ; Nanotechnology - methods ; Nanotechnology and Microengineering ; Nanotubes ; Nanotubes - chemistry ; Nanowires ; NMR ; Nuclear magnetic resonance ; Parameters ; Stiffness ; Synthesis ; Tubes</subject><ispartof>Nature nanotechnology, 2009-06, Vol.4 (6), p.349-352</ispartof><rights>Springer Nature Limited 2009</rights><rights>Nature Publishing Group 2009.</rights><rights>Copyright Nature Publishing Group Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-8553dd4e43dbff1c99905c740ef54ad97c8bd23064ad3aa16f72efae3558d36b3</citedby><cites>FETCH-LOGICAL-c482t-8553dd4e43dbff1c99905c740ef54ad97c8bd23064ad3aa16f72efae3558d36b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2009.72$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2009.72$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19498394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aldaye, Faisal A.</creatorcontrib><creatorcontrib>Lo, Pik Kwan</creatorcontrib><creatorcontrib>Karam, Pierre</creatorcontrib><creatorcontrib>McLaughlin, Christopher K.</creatorcontrib><creatorcontrib>Cosa, Gonzalo</creatorcontrib><creatorcontrib>Sleiman, Hanadi F.</creatorcontrib><title>Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>DNA nanotubes can template the growth of nanowires
1
, orient transmembrane proteins for nuclear magnetic resonance determination
2
, and can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers
3
. Current methods for the construction of DNA nanotubes result in symmetrical and cylindrical assemblies that are entirely double-stranded
2
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here, we report a modular approach to DNA nanotube synthesis that provides access to geometrically well-defined triangular and square-shaped DNA nanotubes. We also construct the first nanotube assemblies that can exist in double- and single-stranded forms with significantly different stiffness. This approach allows for parameters such as geometry, stiffness, and single- or double-stranded character to be fine-tuned, and could enable the creation of designer nanotubes for a range of applications, including the growth of nanowires of controlled shape, the loading and release of cargo, and the real-time modulation of stiffness and persistence length within DNA interconnects.
DNA nanotubes can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers. Researchers have now reported a modular approach to DNA nanotube synthesis that can create geometrically well-defined triangular and square tubes. The method allows parameters such as geometry, stiffness and single- or double-stranded character to be tuned, and could provide access to designer nanotubes for a range of applications.</description><subject>Assemblies</subject><subject>Chemistry and Materials Science</subject><subject>Construction methods</subject><subject>Current carriers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA biosynthesis</subject><subject>DNA, Circular - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Drug carriers</subject><subject>Drug delivery</subject><subject>Geometry</subject><subject>Interconnections</subject><subject>letter</subject><subject>Materials Science</subject><subject>Membrane proteins</subject><subject>Microscopy, Atomic Force</subject><subject>Modular construction</subject><subject>Molecular motors</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Nanowires</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Parameters</subject><subject>Stiffness</subject><subject>Synthesis</subject><subject>Tubes</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1vFSEUhomxsbW67NYQTdzNlc8Blk3V2qQfm7omDJy5vc1cqDAs-u_LeG9s0tgVh_M-eSB5ETqhZEUJ199idDGtGCFmpdgbdESV0B3nRr79N2t1iN6Xck-IZIaJd-iQGmE0N-IIDVcp1Mll7FMsc65-3qSI04i_X5_iRT3XAcqymGt0wwR4DWkLc37ELgZcNnE9QYdTxiHVFndN0gII2N-57PwM-QM6GN1U4OP-PEa_f_64PfvVXd6cX5ydXnZeaDZ3WkoeggDBwzCO1BtjiPRKEBilcMEor4fAOOnbhTtH-1ExGB1wKXXg_cCP0ded9yGnPxXKbLeb4mGaXIRUi2WkZ70ktIGfX4D3qebY_mZ1b7ShjLEGfXkNYkL1SnDGSKO6HeVzKiXDaB_yZuvyo6XELv3Yv_3YpR-rFuunvbUOWwjP9L6QBqx2QGlRXEN-fvb_xifWXZvj</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Aldaye, Faisal A.</creator><creator>Lo, Pik Kwan</creator><creator>Karam, Pierre</creator><creator>McLaughlin, Christopher K.</creator><creator>Cosa, Gonzalo</creator><creator>Sleiman, Hanadi F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TM</scope></search><sort><creationdate>20090601</creationdate><title>Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character</title><author>Aldaye, Faisal A. ; Lo, Pik Kwan ; Karam, Pierre ; McLaughlin, Christopher K. ; Cosa, Gonzalo ; Sleiman, Hanadi F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-8553dd4e43dbff1c99905c740ef54ad97c8bd23064ad3aa16f72efae3558d36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Assemblies</topic><topic>Chemistry and Materials Science</topic><topic>Construction methods</topic><topic>Current carriers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA biosynthesis</topic><topic>DNA, Circular - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Drug carriers</topic><topic>Drug delivery</topic><topic>Geometry</topic><topic>Interconnections</topic><topic>letter</topic><topic>Materials Science</topic><topic>Membrane proteins</topic><topic>Microscopy, Atomic Force</topic><topic>Modular construction</topic><topic>Molecular motors</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Nanowires</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Parameters</topic><topic>Stiffness</topic><topic>Synthesis</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldaye, Faisal A.</creatorcontrib><creatorcontrib>Lo, Pik Kwan</creatorcontrib><creatorcontrib>Karam, Pierre</creatorcontrib><creatorcontrib>McLaughlin, Christopher K.</creatorcontrib><creatorcontrib>Cosa, Gonzalo</creatorcontrib><creatorcontrib>Sleiman, Hanadi F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldaye, Faisal A.</au><au>Lo, Pik Kwan</au><au>Karam, Pierre</au><au>McLaughlin, Christopher K.</au><au>Cosa, Gonzalo</au><au>Sleiman, Hanadi F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>349</spage><epage>352</epage><pages>349-352</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>DNA nanotubes can template the growth of nanowires
1
, orient transmembrane proteins for nuclear magnetic resonance determination
2
, and can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers
3
. Current methods for the construction of DNA nanotubes result in symmetrical and cylindrical assemblies that are entirely double-stranded
2
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
. Here, we report a modular approach to DNA nanotube synthesis that provides access to geometrically well-defined triangular and square-shaped DNA nanotubes. We also construct the first nanotube assemblies that can exist in double- and single-stranded forms with significantly different stiffness. This approach allows for parameters such as geometry, stiffness, and single- or double-stranded character to be fine-tuned, and could enable the creation of designer nanotubes for a range of applications, including the growth of nanowires of controlled shape, the loading and release of cargo, and the real-time modulation of stiffness and persistence length within DNA interconnects.
DNA nanotubes can potentially act as stiff interconnects, tracks for molecular motors and nanoscale drug carriers. Researchers have now reported a modular approach to DNA nanotube synthesis that can create geometrically well-defined triangular and square tubes. The method allows parameters such as geometry, stiffness and single- or double-stranded character to be tuned, and could provide access to designer nanotubes for a range of applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19498394</pmid><doi>10.1038/nnano.2009.72</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2009-06, Vol.4 (6), p.349-352 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_20626501 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Assemblies Chemistry and Materials Science Construction methods Current carriers Deoxyribonucleic acid DNA DNA - chemistry DNA biosynthesis DNA, Circular - chemistry DNA, Single-Stranded - chemistry Drug carriers Drug delivery Geometry Interconnections letter Materials Science Membrane proteins Microscopy, Atomic Force Modular construction Molecular motors Nanotechnology Nanotechnology - methods Nanotechnology and Microengineering Nanotubes Nanotubes - chemistry Nanowires NMR Nuclear magnetic resonance Parameters Stiffness Synthesis Tubes |
title | Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20construction%20of%20DNA%20nanotubes%20of%20tunable%20geometry%20and%20single-%20or%20double-stranded%20character&rft.jtitle=Nature%20nanotechnology&rft.au=Aldaye,%20Faisal%20A.&rft.date=2009-06-01&rft.volume=4&rft.issue=6&rft.spage=349&rft.epage=352&rft.pages=349-352&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2009.72&rft_dat=%3Cproquest_cross%3E2476743220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476743220&rft_id=info:pmid/19498394&rfr_iscdi=true |