Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design

The alignment of energy levels within an OLED device is paramount for high efficiency performance. In this study, the emissive, electron transport, and hole transport layers are consecutively evolved under the constraint of fixed electrode potentials. This materials development strategy takes into c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2018-12, Vol.58 (12), p.2440-2449
Hauptverfasser: Lu, Shao-Yu, Mukhopadhyay, Sukrit, Froese, Robert, Zimmerman, Paul M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2449
container_issue 12
container_start_page 2440
container_title Journal of chemical information and modeling
container_volume 58
creator Lu, Shao-Yu
Mukhopadhyay, Sukrit
Froese, Robert
Zimmerman, Paul M
description The alignment of energy levels within an OLED device is paramount for high efficiency performance. In this study, the emissive, electron transport, and hole transport layers are consecutively evolved under the constraint of fixed electrode potentials. This materials development strategy takes into consideration the full multilayer OLED device, rather than just individual components. In addition to introducing this protocol, an evolutionary method, a genetic algorithm (GA), is evaluated in detail to increase its efficiency in searching through a library of 30 million organic compounds. On the basis of the optimization of the variety of GA parameters and selection methods, an exponential ranking selection protocol with a high mutation rate is found to be the preferred method for quickly identifying the top-performing molecules within the large chemical space. This search through OLED materials space shows that the pyridine-based central core with acridine-based fragments are good target host molecules for common electrode materials. Additionally, weak electron-donating groups, such as naphthalene- and xylene-based fragments, appear often in the optimal electron-transport layer materials. Triphenylamine- and acridine-based fragments, due to their strong electron-donating character, were found to be good candidates for the hole-transport layer.
doi_str_mv 10.1021/acs.jcim.8b00044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2061410064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169258721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-8cea5157337e0fec733b3495d2b0d1f2491108d8477463b2dc19f216471f0ca03</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMotlb3riTgxkVbXzKZjyylrVYodGEVdyGTScqU6aQmM0L_valtRQRXeYRzz3tchK4JDAlQci-VH65UuR5mOQAwdoK6JGZ8wBN4Pz3OMU866ML7FUAU8YSeow7lnPEozroofytd08oKvyindV3WS2wNntpK44WTtd9Y1_TxpNKqcbb-_SfrInC-wTO51c5jYx2eGBPA8lPj-WwyxmPty2V9ic6MrLy-Orw99Po4WYymg9n86Xn0MBtIBqQZZErLmMRpFKUagiYMecR4XNAcCmIo44RAVmQsTVkS5bRQhBtKEpYSA0pC1EN3e-_G2Y9W-0asS690Vcla29YLCglhBCBhAb39g65s6-pwnQhGTuMspSRQsKeUs947bcTGlWvptoKA2PUvQv9i17849B8iNwdxm6918RM4Fh6A_h74jh6X_uv7Avn0j08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169258721</pqid></control><display><type>article</type><title>Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design</title><source>American Chemical Society Journals</source><creator>Lu, Shao-Yu ; Mukhopadhyay, Sukrit ; Froese, Robert ; Zimmerman, Paul M</creator><creatorcontrib>Lu, Shao-Yu ; Mukhopadhyay, Sukrit ; Froese, Robert ; Zimmerman, Paul M</creatorcontrib><description>The alignment of energy levels within an OLED device is paramount for high efficiency performance. In this study, the emissive, electron transport, and hole transport layers are consecutively evolved under the constraint of fixed electrode potentials. This materials development strategy takes into consideration the full multilayer OLED device, rather than just individual components. In addition to introducing this protocol, an evolutionary method, a genetic algorithm (GA), is evaluated in detail to increase its efficiency in searching through a library of 30 million organic compounds. On the basis of the optimization of the variety of GA parameters and selection methods, an exponential ranking selection protocol with a high mutation rate is found to be the preferred method for quickly identifying the top-performing molecules within the large chemical space. This search through OLED materials space shows that the pyridine-based central core with acridine-based fragments are good target host molecules for common electrode materials. Additionally, weak electron-donating groups, such as naphthalene- and xylene-based fragments, appear often in the optimal electron-transport layer materials. Triphenylamine- and acridine-based fragments, due to their strong electron-donating character, were found to be good candidates for the hole-transport layer.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00044</identifier><identifier>PMID: 29949358</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrode materials ; Electrodes ; Electron transfer ; Electron transport ; Energy levels ; Evolutionary algorithms ; Fragmentation ; Fragments ; Genetic algorithms ; Multilayers ; Naphthalene ; Organic chemicals ; Organic chemistry ; Organic compounds ; Organic light emitting diodes ; Xylene</subject><ispartof>Journal of chemical information and modeling, 2018-12, Vol.58 (12), p.2440-2449</ispartof><rights>Copyright American Chemical Society Dec 24, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-8cea5157337e0fec733b3495d2b0d1f2491108d8477463b2dc19f216471f0ca03</citedby><cites>FETCH-LOGICAL-a401t-8cea5157337e0fec733b3495d2b0d1f2491108d8477463b2dc19f216471f0ca03</cites><orcidid>0000-0001-7304-2322 ; 0000-0002-7444-1314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00044$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.8b00044$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29949358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Shao-Yu</creatorcontrib><creatorcontrib>Mukhopadhyay, Sukrit</creatorcontrib><creatorcontrib>Froese, Robert</creatorcontrib><creatorcontrib>Zimmerman, Paul M</creatorcontrib><title>Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The alignment of energy levels within an OLED device is paramount for high efficiency performance. In this study, the emissive, electron transport, and hole transport layers are consecutively evolved under the constraint of fixed electrode potentials. This materials development strategy takes into consideration the full multilayer OLED device, rather than just individual components. In addition to introducing this protocol, an evolutionary method, a genetic algorithm (GA), is evaluated in detail to increase its efficiency in searching through a library of 30 million organic compounds. On the basis of the optimization of the variety of GA parameters and selection methods, an exponential ranking selection protocol with a high mutation rate is found to be the preferred method for quickly identifying the top-performing molecules within the large chemical space. This search through OLED materials space shows that the pyridine-based central core with acridine-based fragments are good target host molecules for common electrode materials. Additionally, weak electron-donating groups, such as naphthalene- and xylene-based fragments, appear often in the optimal electron-transport layer materials. Triphenylamine- and acridine-based fragments, due to their strong electron-donating character, were found to be good candidates for the hole-transport layer.</description><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Energy levels</subject><subject>Evolutionary algorithms</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Genetic algorithms</subject><subject>Multilayers</subject><subject>Naphthalene</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Organic light emitting diodes</subject><subject>Xylene</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMotlb3riTgxkVbXzKZjyylrVYodGEVdyGTScqU6aQmM0L_valtRQRXeYRzz3tchK4JDAlQci-VH65UuR5mOQAwdoK6JGZ8wBN4Pz3OMU866ML7FUAU8YSeow7lnPEozroofytd08oKvyindV3WS2wNntpK44WTtd9Y1_TxpNKqcbb-_SfrInC-wTO51c5jYx2eGBPA8lPj-WwyxmPty2V9ic6MrLy-Orw99Po4WYymg9n86Xn0MBtIBqQZZErLmMRpFKUagiYMecR4XNAcCmIo44RAVmQsTVkS5bRQhBtKEpYSA0pC1EN3e-_G2Y9W-0asS690Vcla29YLCglhBCBhAb39g65s6-pwnQhGTuMspSRQsKeUs947bcTGlWvptoKA2PUvQv9i17849B8iNwdxm6918RM4Fh6A_h74jh6X_uv7Avn0j08</recordid><startdate>20181224</startdate><enddate>20181224</enddate><creator>Lu, Shao-Yu</creator><creator>Mukhopadhyay, Sukrit</creator><creator>Froese, Robert</creator><creator>Zimmerman, Paul M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7304-2322</orcidid><orcidid>https://orcid.org/0000-0002-7444-1314</orcidid></search><sort><creationdate>20181224</creationdate><title>Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design</title><author>Lu, Shao-Yu ; Mukhopadhyay, Sukrit ; Froese, Robert ; Zimmerman, Paul M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-8cea5157337e0fec733b3495d2b0d1f2491108d8477463b2dc19f216471f0ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Energy levels</topic><topic>Evolutionary algorithms</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Genetic algorithms</topic><topic>Multilayers</topic><topic>Naphthalene</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Organic light emitting diodes</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shao-Yu</creatorcontrib><creatorcontrib>Mukhopadhyay, Sukrit</creatorcontrib><creatorcontrib>Froese, Robert</creatorcontrib><creatorcontrib>Zimmerman, Paul M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shao-Yu</au><au>Mukhopadhyay, Sukrit</au><au>Froese, Robert</au><au>Zimmerman, Paul M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-12-24</date><risdate>2018</risdate><volume>58</volume><issue>12</issue><spage>2440</spage><epage>2449</epage><pages>2440-2449</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The alignment of energy levels within an OLED device is paramount for high efficiency performance. In this study, the emissive, electron transport, and hole transport layers are consecutively evolved under the constraint of fixed electrode potentials. This materials development strategy takes into consideration the full multilayer OLED device, rather than just individual components. In addition to introducing this protocol, an evolutionary method, a genetic algorithm (GA), is evaluated in detail to increase its efficiency in searching through a library of 30 million organic compounds. On the basis of the optimization of the variety of GA parameters and selection methods, an exponential ranking selection protocol with a high mutation rate is found to be the preferred method for quickly identifying the top-performing molecules within the large chemical space. This search through OLED materials space shows that the pyridine-based central core with acridine-based fragments are good target host molecules for common electrode materials. Additionally, weak electron-donating groups, such as naphthalene- and xylene-based fragments, appear often in the optimal electron-transport layer materials. Triphenylamine- and acridine-based fragments, due to their strong electron-donating character, were found to be good candidates for the hole-transport layer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29949358</pmid><doi>10.1021/acs.jcim.8b00044</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7304-2322</orcidid><orcidid>https://orcid.org/0000-0002-7444-1314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2018-12, Vol.58 (12), p.2440-2449
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2061410064
source American Chemical Society Journals
subjects Electrode materials
Electrodes
Electron transfer
Electron transport
Energy levels
Evolutionary algorithms
Fragmentation
Fragments
Genetic algorithms
Multilayers
Naphthalene
Organic chemicals
Organic chemistry
Organic compounds
Organic light emitting diodes
Xylene
title Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Screening%20of%20Hole%20Transport,%20Electron%20Transport,%20and%20Host%20Layers%20for%20Effective%20OLED%20Design&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Lu,%20Shao-Yu&rft.date=2018-12-24&rft.volume=58&rft.issue=12&rft.spage=2440&rft.epage=2449&rft.pages=2440-2449&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00044&rft_dat=%3Cproquest_cross%3E2169258721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169258721&rft_id=info:pmid/29949358&rfr_iscdi=true