The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO₂ Doubling

This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2006-08, Vol.19 (16), p.3903-3931
Hauptverfasser: Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., Walters, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3931
container_issue 16
container_start_page 3903
container_title Journal of climate
container_volume 19
creator Schmidt, H.
Brasseur, G. P.
Charron, M.
Manzini, E.
Giorgetta, M. A.
Diehl, T.
Fomichev, V. I.
Kinnison, D.
Marsh, D.
Walters, S.
description This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.
doi_str_mv 10.1175/jcli3829.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20611901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26259212</jstor_id><sourcerecordid>26259212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-9d91d972c5055cf3a34fb43c77de98cdc764118bbef3ad3e43b468c84484989b3</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EEqWwsCNlAAakFL_-iO2xioAWNXQps-U4jprKbYqdDv33JGoF0w333Ol0CN0DngAI_rqxvqGSqAlcoBFwglPMGLlEIywVS6Xg_BrdxLjBGEiG8Qg9rtYumU2LYvk1nyb52m2b2IVjkvtmazqXFG3l_C26qo2P7u6sY_T9_rbKZ-li-THPp4vUMi66VFUKKiWI5ZhzW1NDWV0yaoWonJK2siJjALIsXe9V1DFaskxayZhkSqqSjtHzqXcf2p-Di53u11jnvdm59hA1wRmAwtCDLyfQhjbG4Gq9D_3ecNSA9XCE_swX8-EIPcBP51YTrfF1MDvbxP-ExEIxkD33cOI2sWvDn08ywhUBQn8B7QFkWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20611901</pqid></control><display><type>article</type><title>The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO₂ Doubling</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schmidt, H. ; Brasseur, G. P. ; Charron, M. ; Manzini, E. ; Giorgetta, M. A. ; Diehl, T. ; Fomichev, V. I. ; Kinnison, D. ; Marsh, D. ; Walters, S.</creator><creatorcontrib>Schmidt, H. ; Brasseur, G. P. ; Charron, M. ; Manzini, E. ; Giorgetta, M. A. ; Diehl, T. ; Fomichev, V. I. ; Kinnison, D. ; Marsh, D. ; Walters, S.</creatorcontrib><description>This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli3829.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric composition. Chemical and photochemical reactions ; Atmospheric models ; Atmospherics ; Climate models ; Cooling ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Mesopause ; Mesosphere ; Mixing ratios ; Ozone ; Physics of the high neutral atmosphere ; Simulations ; Thermosphere</subject><ispartof>Journal of climate, 2006-08, Vol.19 (16), p.3903-3931</ispartof><rights>2006 American Meteorological Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-9d91d972c5055cf3a34fb43c77de98cdc764118bbef3ad3e43b468c84484989b3</citedby><cites>FETCH-LOGICAL-c457t-9d91d972c5055cf3a34fb43c77de98cdc764118bbef3ad3e43b468c84484989b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26259212$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26259212$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18079418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, H.</creatorcontrib><creatorcontrib>Brasseur, G. P.</creatorcontrib><creatorcontrib>Charron, M.</creatorcontrib><creatorcontrib>Manzini, E.</creatorcontrib><creatorcontrib>Giorgetta, M. A.</creatorcontrib><creatorcontrib>Diehl, T.</creatorcontrib><creatorcontrib>Fomichev, V. I.</creatorcontrib><creatorcontrib>Kinnison, D.</creatorcontrib><creatorcontrib>Marsh, D.</creatorcontrib><creatorcontrib>Walters, S.</creatorcontrib><title>The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO₂ Doubling</title><title>Journal of climate</title><description>This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.</description><subject>Atmospheric composition. Chemical and photochemical reactions</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate models</subject><subject>Cooling</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Mesopause</subject><subject>Mesosphere</subject><subject>Mixing ratios</subject><subject>Ozone</subject><subject>Physics of the high neutral atmosphere</subject><subject>Simulations</subject><subject>Thermosphere</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EEqWwsCNlAAakFL_-iO2xioAWNXQps-U4jprKbYqdDv33JGoF0w333Ol0CN0DngAI_rqxvqGSqAlcoBFwglPMGLlEIywVS6Xg_BrdxLjBGEiG8Qg9rtYumU2LYvk1nyb52m2b2IVjkvtmazqXFG3l_C26qo2P7u6sY_T9_rbKZ-li-THPp4vUMi66VFUKKiWI5ZhzW1NDWV0yaoWonJK2siJjALIsXe9V1DFaskxayZhkSqqSjtHzqXcf2p-Di53u11jnvdm59hA1wRmAwtCDLyfQhjbG4Gq9D_3ecNSA9XCE_swX8-EIPcBP51YTrfF1MDvbxP-ExEIxkD33cOI2sWvDn08ywhUBQn8B7QFkWQ</recordid><startdate>20060815</startdate><enddate>20060815</enddate><creator>Schmidt, H.</creator><creator>Brasseur, G. P.</creator><creator>Charron, M.</creator><creator>Manzini, E.</creator><creator>Giorgetta, M. A.</creator><creator>Diehl, T.</creator><creator>Fomichev, V. I.</creator><creator>Kinnison, D.</creator><creator>Marsh, D.</creator><creator>Walters, S.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20060815</creationdate><title>The HAMMONIA Chemistry Climate Model</title><author>Schmidt, H. ; Brasseur, G. P. ; Charron, M. ; Manzini, E. ; Giorgetta, M. A. ; Diehl, T. ; Fomichev, V. I. ; Kinnison, D. ; Marsh, D. ; Walters, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-9d91d972c5055cf3a34fb43c77de98cdc764118bbef3ad3e43b468c84484989b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atmospheric composition. Chemical and photochemical reactions</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate models</topic><topic>Cooling</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Mesopause</topic><topic>Mesosphere</topic><topic>Mixing ratios</topic><topic>Ozone</topic><topic>Physics of the high neutral atmosphere</topic><topic>Simulations</topic><topic>Thermosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, H.</creatorcontrib><creatorcontrib>Brasseur, G. P.</creatorcontrib><creatorcontrib>Charron, M.</creatorcontrib><creatorcontrib>Manzini, E.</creatorcontrib><creatorcontrib>Giorgetta, M. A.</creatorcontrib><creatorcontrib>Diehl, T.</creatorcontrib><creatorcontrib>Fomichev, V. I.</creatorcontrib><creatorcontrib>Kinnison, D.</creatorcontrib><creatorcontrib>Marsh, D.</creatorcontrib><creatorcontrib>Walters, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, H.</au><au>Brasseur, G. P.</au><au>Charron, M.</au><au>Manzini, E.</au><au>Giorgetta, M. A.</au><au>Diehl, T.</au><au>Fomichev, V. I.</au><au>Kinnison, D.</au><au>Marsh, D.</au><au>Walters, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO₂ Doubling</atitle><jtitle>Journal of climate</jtitle><date>2006-08-15</date><risdate>2006</risdate><volume>19</volume><issue>16</issue><spage>3903</spage><epage>3931</epage><pages>3903-3931</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli3829.1</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2006-08, Vol.19 (16), p.3903-3931
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_20611901
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Atmospheric composition. Chemical and photochemical reactions
Atmospheric models
Atmospherics
Climate models
Cooling
Earth, ocean, space
Exact sciences and technology
External geophysics
Mesopause
Mesosphere
Mixing ratios
Ozone
Physics of the high neutral atmosphere
Simulations
Thermosphere
title The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO₂ Doubling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20HAMMONIA%20Chemistry%20Climate%20Model:%20Sensitivity%20of%20the%20Mesopause%20Region%20to%20the%2011-Year%20Solar%20Cycle%20and%20CO%E2%82%82%20Doubling&rft.jtitle=Journal%20of%20climate&rft.au=Schmidt,%20H.&rft.date=2006-08-15&rft.volume=19&rft.issue=16&rft.spage=3903&rft.epage=3931&rft.pages=3903-3931&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli3829.1&rft_dat=%3Cjstor_proqu%3E26259212%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20611901&rft_id=info:pmid/&rft_jstor_id=26259212&rfr_iscdi=true