Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning

Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2019-02, Vol.56 (2), p.1475-1487
Hauptverfasser: Saavedra, Ana, Ballesteros, Jesús J., Tyebji, Shiraz, Martínez-Torres, Sara, Blázquez, Gloria, López-Hidalgo, Rosa, Azkona, Garikoitz, Alberch, Jordi, Martín, Eduardo D., Pérez-Navarro, Esther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1487
container_issue 2
container_start_page 1475
container_title Molecular neurobiology
container_volume 56
creator Saavedra, Ana
Ballesteros, Jesús J.
Tyebji, Shiraz
Martínez-Torres, Sara
Blázquez, Gloria
López-Hidalgo, Rosa
Azkona, Garikoitz
Alberch, Jordi
Martín, Eduardo D.
Pérez-Navarro, Esther
description Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP 61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP 61 levels were significantly reduced, with a concomitant increase of STEP 33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP 61 levels were significantly reduced, but STEP 33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB Tyr816 , pPLCγ Tyr783 , and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP 61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP 61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.
doi_str_mv 10.1007/s12035-018-1170-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060876296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060876296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRsH78AHcBN26i781kZpJlqdUKAQvW9fCaTEpKmokz6aL_3ikVBMHV48K5l8dh7A7hEQH0U0AOQqaAeYqoIcUzNkEpi5hyfs4mkBci1SrLL9lVCFsAzhH0hE2X3o3WdYexrZJnu_FU09i6PnFNsmiHwVW0G6hLPlbzpcKk7ZNytUyor5PSku_bfnPDLhrqgr39udfs82W-mi3S8v31bTYt04rrYkwLWFtOWZVpCURUYGYRERQJpEZIqWrdiNo2nHStJBWqEbbJheawxsJCLa7Zw2l38O5rb8Nodm2obNdRb90-GA4Kcq14oSJ6_wfdur3v43eRkiKSHGWk8ERV3oXgbWMG3-7IHwyCOUo1J6kmSjVHqQZjh586IbL9xvrf5f9L3zWMdwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053206215</pqid></control><display><type>article</type><title>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saavedra, Ana ; Ballesteros, Jesús J. ; Tyebji, Shiraz ; Martínez-Torres, Sara ; Blázquez, Gloria ; López-Hidalgo, Rosa ; Azkona, Garikoitz ; Alberch, Jordi ; Martín, Eduardo D. ; Pérez-Navarro, Esther</creator><creatorcontrib>Saavedra, Ana ; Ballesteros, Jesús J. ; Tyebji, Shiraz ; Martínez-Torres, Sara ; Blázquez, Gloria ; López-Hidalgo, Rosa ; Azkona, Garikoitz ; Alberch, Jordi ; Martín, Eduardo D. ; Pérez-Navarro, Esther</creatorcontrib><description>Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP 61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP 61 levels were significantly reduced, with a concomitant increase of STEP 33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP 61 levels were significantly reduced, but STEP 33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB Tyr816 , pPLCγ Tyr783 , and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP 61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP 61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-1170-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age ; Biomedical and Life Sciences ; Biomedicine ; Brain-derived neurotrophic factor ; Calpain ; Cell Biology ; Degradation ; Hippocampus ; Long term memory ; Long-term potentiation ; Mice ; Neostriatum ; Neurobiology ; Neurology ; Neurosciences ; Plasticity ; Proteasomes ; Protein-tyrosine-phosphatase ; Proteolysis ; Rodents ; Spontaneous alternation ; Synaptic plasticity ; Theta rhythms ; TrkB receptors ; Ubiquitination</subject><ispartof>Molecular neurobiology, 2019-02, Vol.56 (2), p.1475-1487</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</citedby><cites>FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</cites><orcidid>0000-0001-9165-6539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-018-1170-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-018-1170-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Saavedra, Ana</creatorcontrib><creatorcontrib>Ballesteros, Jesús J.</creatorcontrib><creatorcontrib>Tyebji, Shiraz</creatorcontrib><creatorcontrib>Martínez-Torres, Sara</creatorcontrib><creatorcontrib>Blázquez, Gloria</creatorcontrib><creatorcontrib>López-Hidalgo, Rosa</creatorcontrib><creatorcontrib>Azkona, Garikoitz</creatorcontrib><creatorcontrib>Alberch, Jordi</creatorcontrib><creatorcontrib>Martín, Eduardo D.</creatorcontrib><creatorcontrib>Pérez-Navarro, Esther</creatorcontrib><title>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><description>Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP 61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP 61 levels were significantly reduced, with a concomitant increase of STEP 33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP 61 levels were significantly reduced, but STEP 33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB Tyr816 , pPLCγ Tyr783 , and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP 61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP 61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.</description><subject>Age</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain-derived neurotrophic factor</subject><subject>Calpain</subject><subject>Cell Biology</subject><subject>Degradation</subject><subject>Hippocampus</subject><subject>Long term memory</subject><subject>Long-term potentiation</subject><subject>Mice</subject><subject>Neostriatum</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Plasticity</subject><subject>Proteasomes</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Proteolysis</subject><subject>Rodents</subject><subject>Spontaneous alternation</subject><subject>Synaptic plasticity</subject><subject>Theta rhythms</subject><subject>TrkB receptors</subject><subject>Ubiquitination</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AURQdRsH78AHcBN26i781kZpJlqdUKAQvW9fCaTEpKmokz6aL_3ikVBMHV48K5l8dh7A7hEQH0U0AOQqaAeYqoIcUzNkEpi5hyfs4mkBci1SrLL9lVCFsAzhH0hE2X3o3WdYexrZJnu_FU09i6PnFNsmiHwVW0G6hLPlbzpcKk7ZNytUyor5PSku_bfnPDLhrqgr39udfs82W-mi3S8v31bTYt04rrYkwLWFtOWZVpCURUYGYRERQJpEZIqWrdiNo2nHStJBWqEbbJheawxsJCLa7Zw2l38O5rb8Nodm2obNdRb90-GA4Kcq14oSJ6_wfdur3v43eRkiKSHGWk8ERV3oXgbWMG3-7IHwyCOUo1J6kmSjVHqQZjh586IbL9xvrf5f9L3zWMdwg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Saavedra, Ana</creator><creator>Ballesteros, Jesús J.</creator><creator>Tyebji, Shiraz</creator><creator>Martínez-Torres, Sara</creator><creator>Blázquez, Gloria</creator><creator>López-Hidalgo, Rosa</creator><creator>Azkona, Garikoitz</creator><creator>Alberch, Jordi</creator><creator>Martín, Eduardo D.</creator><creator>Pérez-Navarro, Esther</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9165-6539</orcidid></search><sort><creationdate>20190201</creationdate><title>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</title><author>Saavedra, Ana ; Ballesteros, Jesús J. ; Tyebji, Shiraz ; Martínez-Torres, Sara ; Blázquez, Gloria ; López-Hidalgo, Rosa ; Azkona, Garikoitz ; Alberch, Jordi ; Martín, Eduardo D. ; Pérez-Navarro, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain-derived neurotrophic factor</topic><topic>Calpain</topic><topic>Cell Biology</topic><topic>Degradation</topic><topic>Hippocampus</topic><topic>Long term memory</topic><topic>Long-term potentiation</topic><topic>Mice</topic><topic>Neostriatum</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Plasticity</topic><topic>Proteasomes</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Proteolysis</topic><topic>Rodents</topic><topic>Spontaneous alternation</topic><topic>Synaptic plasticity</topic><topic>Theta rhythms</topic><topic>TrkB receptors</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saavedra, Ana</creatorcontrib><creatorcontrib>Ballesteros, Jesús J.</creatorcontrib><creatorcontrib>Tyebji, Shiraz</creatorcontrib><creatorcontrib>Martínez-Torres, Sara</creatorcontrib><creatorcontrib>Blázquez, Gloria</creatorcontrib><creatorcontrib>López-Hidalgo, Rosa</creatorcontrib><creatorcontrib>Azkona, Garikoitz</creatorcontrib><creatorcontrib>Alberch, Jordi</creatorcontrib><creatorcontrib>Martín, Eduardo D.</creatorcontrib><creatorcontrib>Pérez-Navarro, Esther</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saavedra, Ana</au><au>Ballesteros, Jesús J.</au><au>Tyebji, Shiraz</au><au>Martínez-Torres, Sara</au><au>Blázquez, Gloria</au><au>López-Hidalgo, Rosa</au><au>Azkona, Garikoitz</au><au>Alberch, Jordi</au><au>Martín, Eduardo D.</au><au>Pérez-Navarro, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>56</volume><issue>2</issue><spage>1475</spage><epage>1487</epage><pages>1475-1487</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP 61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP 61 levels were significantly reduced, with a concomitant increase of STEP 33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP 61 levels were significantly reduced, but STEP 33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB Tyr816 , pPLCγ Tyr783 , and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP 61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP 61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12035-018-1170-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9165-6539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2019-02, Vol.56 (2), p.1475-1487
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_2060876296
source SpringerLink Journals - AutoHoldings
subjects Age
Biomedical and Life Sciences
Biomedicine
Brain-derived neurotrophic factor
Calpain
Cell Biology
Degradation
Hippocampus
Long term memory
Long-term potentiation
Mice
Neostriatum
Neurobiology
Neurology
Neurosciences
Plasticity
Proteasomes
Protein-tyrosine-phosphatase
Proteolysis
Rodents
Spontaneous alternation
Synaptic plasticity
Theta rhythms
TrkB receptors
Ubiquitination
title Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20Degradation%20of%20Hippocampal%20STEP61%20in%20LTP%20and%20Learning&rft.jtitle=Molecular%20neurobiology&rft.au=Saavedra,%20Ana&rft.date=2019-02-01&rft.volume=56&rft.issue=2&rft.spage=1475&rft.epage=1487&rft.pages=1475-1487&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-1170-1&rft_dat=%3Cproquest_cross%3E2060876296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2053206215&rft_id=info:pmid/&rfr_iscdi=true