Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning
Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examine...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2019-02, Vol.56 (2), p.1475-1487 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1487 |
---|---|
container_issue | 2 |
container_start_page | 1475 |
container_title | Molecular neurobiology |
container_volume | 56 |
creator | Saavedra, Ana Ballesteros, Jesús J. Tyebji, Shiraz Martínez-Torres, Sara Blázquez, Gloria López-Hidalgo, Rosa Azkona, Garikoitz Alberch, Jordi Martín, Eduardo D. Pérez-Navarro, Esther |
description | Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP
61
levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP
61
levels were significantly reduced, with a concomitant increase of STEP
33
levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP
61
levels were significantly reduced, but STEP
33
levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB
Tyr816
, pPLCγ
Tyr783
, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP
61
accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP
61
undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes. |
doi_str_mv | 10.1007/s12035-018-1170-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060876296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060876296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRsH78AHcBN26i781kZpJlqdUKAQvW9fCaTEpKmokz6aL_3ikVBMHV48K5l8dh7A7hEQH0U0AOQqaAeYqoIcUzNkEpi5hyfs4mkBci1SrLL9lVCFsAzhH0hE2X3o3WdYexrZJnu_FU09i6PnFNsmiHwVW0G6hLPlbzpcKk7ZNytUyor5PSku_bfnPDLhrqgr39udfs82W-mi3S8v31bTYt04rrYkwLWFtOWZVpCURUYGYRERQJpEZIqWrdiNo2nHStJBWqEbbJheawxsJCLa7Zw2l38O5rb8Nodm2obNdRb90-GA4Kcq14oSJ6_wfdur3v43eRkiKSHGWk8ERV3oXgbWMG3-7IHwyCOUo1J6kmSjVHqQZjh586IbL9xvrf5f9L3zWMdwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053206215</pqid></control><display><type>article</type><title>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saavedra, Ana ; Ballesteros, Jesús J. ; Tyebji, Shiraz ; Martínez-Torres, Sara ; Blázquez, Gloria ; López-Hidalgo, Rosa ; Azkona, Garikoitz ; Alberch, Jordi ; Martín, Eduardo D. ; Pérez-Navarro, Esther</creator><creatorcontrib>Saavedra, Ana ; Ballesteros, Jesús J. ; Tyebji, Shiraz ; Martínez-Torres, Sara ; Blázquez, Gloria ; López-Hidalgo, Rosa ; Azkona, Garikoitz ; Alberch, Jordi ; Martín, Eduardo D. ; Pérez-Navarro, Esther</creatorcontrib><description>Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP
61
levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP
61
levels were significantly reduced, with a concomitant increase of STEP
33
levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP
61
levels were significantly reduced, but STEP
33
levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB
Tyr816
, pPLCγ
Tyr783
, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP
61
accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP
61
undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-1170-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age ; Biomedical and Life Sciences ; Biomedicine ; Brain-derived neurotrophic factor ; Calpain ; Cell Biology ; Degradation ; Hippocampus ; Long term memory ; Long-term potentiation ; Mice ; Neostriatum ; Neurobiology ; Neurology ; Neurosciences ; Plasticity ; Proteasomes ; Protein-tyrosine-phosphatase ; Proteolysis ; Rodents ; Spontaneous alternation ; Synaptic plasticity ; Theta rhythms ; TrkB receptors ; Ubiquitination</subject><ispartof>Molecular neurobiology, 2019-02, Vol.56 (2), p.1475-1487</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</citedby><cites>FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</cites><orcidid>0000-0001-9165-6539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-018-1170-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-018-1170-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Saavedra, Ana</creatorcontrib><creatorcontrib>Ballesteros, Jesús J.</creatorcontrib><creatorcontrib>Tyebji, Shiraz</creatorcontrib><creatorcontrib>Martínez-Torres, Sara</creatorcontrib><creatorcontrib>Blázquez, Gloria</creatorcontrib><creatorcontrib>López-Hidalgo, Rosa</creatorcontrib><creatorcontrib>Azkona, Garikoitz</creatorcontrib><creatorcontrib>Alberch, Jordi</creatorcontrib><creatorcontrib>Martín, Eduardo D.</creatorcontrib><creatorcontrib>Pérez-Navarro, Esther</creatorcontrib><title>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><description>Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP
61
levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP
61
levels were significantly reduced, with a concomitant increase of STEP
33
levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP
61
levels were significantly reduced, but STEP
33
levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB
Tyr816
, pPLCγ
Tyr783
, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP
61
accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP
61
undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.</description><subject>Age</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain-derived neurotrophic factor</subject><subject>Calpain</subject><subject>Cell Biology</subject><subject>Degradation</subject><subject>Hippocampus</subject><subject>Long term memory</subject><subject>Long-term potentiation</subject><subject>Mice</subject><subject>Neostriatum</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Plasticity</subject><subject>Proteasomes</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Proteolysis</subject><subject>Rodents</subject><subject>Spontaneous alternation</subject><subject>Synaptic plasticity</subject><subject>Theta rhythms</subject><subject>TrkB receptors</subject><subject>Ubiquitination</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AURQdRsH78AHcBN26i781kZpJlqdUKAQvW9fCaTEpKmokz6aL_3ikVBMHV48K5l8dh7A7hEQH0U0AOQqaAeYqoIcUzNkEpi5hyfs4mkBci1SrLL9lVCFsAzhH0hE2X3o3WdYexrZJnu_FU09i6PnFNsmiHwVW0G6hLPlbzpcKk7ZNytUyor5PSku_bfnPDLhrqgr39udfs82W-mi3S8v31bTYt04rrYkwLWFtOWZVpCURUYGYRERQJpEZIqWrdiNo2nHStJBWqEbbJheawxsJCLa7Zw2l38O5rb8Nodm2obNdRb90-GA4Kcq14oSJ6_wfdur3v43eRkiKSHGWk8ERV3oXgbWMG3-7IHwyCOUo1J6kmSjVHqQZjh586IbL9xvrf5f9L3zWMdwg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Saavedra, Ana</creator><creator>Ballesteros, Jesús J.</creator><creator>Tyebji, Shiraz</creator><creator>Martínez-Torres, Sara</creator><creator>Blázquez, Gloria</creator><creator>López-Hidalgo, Rosa</creator><creator>Azkona, Garikoitz</creator><creator>Alberch, Jordi</creator><creator>Martín, Eduardo D.</creator><creator>Pérez-Navarro, Esther</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9165-6539</orcidid></search><sort><creationdate>20190201</creationdate><title>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</title><author>Saavedra, Ana ; Ballesteros, Jesús J. ; Tyebji, Shiraz ; Martínez-Torres, Sara ; Blázquez, Gloria ; López-Hidalgo, Rosa ; Azkona, Garikoitz ; Alberch, Jordi ; Martín, Eduardo D. ; Pérez-Navarro, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-90be2a4c4750aaa914e11106a31af3556d7f3def2a7d65a96f3ef83720b19e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain-derived neurotrophic factor</topic><topic>Calpain</topic><topic>Cell Biology</topic><topic>Degradation</topic><topic>Hippocampus</topic><topic>Long term memory</topic><topic>Long-term potentiation</topic><topic>Mice</topic><topic>Neostriatum</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Plasticity</topic><topic>Proteasomes</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Proteolysis</topic><topic>Rodents</topic><topic>Spontaneous alternation</topic><topic>Synaptic plasticity</topic><topic>Theta rhythms</topic><topic>TrkB receptors</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saavedra, Ana</creatorcontrib><creatorcontrib>Ballesteros, Jesús J.</creatorcontrib><creatorcontrib>Tyebji, Shiraz</creatorcontrib><creatorcontrib>Martínez-Torres, Sara</creatorcontrib><creatorcontrib>Blázquez, Gloria</creatorcontrib><creatorcontrib>López-Hidalgo, Rosa</creatorcontrib><creatorcontrib>Azkona, Garikoitz</creatorcontrib><creatorcontrib>Alberch, Jordi</creatorcontrib><creatorcontrib>Martín, Eduardo D.</creatorcontrib><creatorcontrib>Pérez-Navarro, Esther</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saavedra, Ana</au><au>Ballesteros, Jesús J.</au><au>Tyebji, Shiraz</au><au>Martínez-Torres, Sara</au><au>Blázquez, Gloria</au><au>López-Hidalgo, Rosa</au><au>Azkona, Garikoitz</au><au>Alberch, Jordi</au><au>Martín, Eduardo D.</au><au>Pérez-Navarro, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>56</volume><issue>2</issue><spage>1475</spage><epage>1487</epage><pages>1475-1487</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP
61
levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP
61
levels were significantly reduced, with a concomitant increase of STEP
33
levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP
61
levels were significantly reduced, but STEP
33
levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkB
Tyr816
, pPLCγ
Tyr783
, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP
61
accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP
61
undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12035-018-1170-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9165-6539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2019-02, Vol.56 (2), p.1475-1487 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_miscellaneous_2060876296 |
source | SpringerLink Journals - AutoHoldings |
subjects | Age Biomedical and Life Sciences Biomedicine Brain-derived neurotrophic factor Calpain Cell Biology Degradation Hippocampus Long term memory Long-term potentiation Mice Neostriatum Neurobiology Neurology Neurosciences Plasticity Proteasomes Protein-tyrosine-phosphatase Proteolysis Rodents Spontaneous alternation Synaptic plasticity Theta rhythms TrkB receptors Ubiquitination |
title | Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20Degradation%20of%20Hippocampal%20STEP61%20in%20LTP%20and%20Learning&rft.jtitle=Molecular%20neurobiology&rft.au=Saavedra,%20Ana&rft.date=2019-02-01&rft.volume=56&rft.issue=2&rft.spage=1475&rft.epage=1487&rft.pages=1475-1487&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-1170-1&rft_dat=%3Cproquest_cross%3E2060876296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2053206215&rft_id=info:pmid/&rfr_iscdi=true |