An armadillo-domain protein participates in a telomerase interaction network

Key message Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2018-07, Vol.97 (4-5), p.407-420
Hauptverfasser: Dokládal, Ladislav, Benková, Eva, Honys, David, Dupľáková, Nikoleta, Lee, Lan-Ying, Gelvin, Stanton B., Sýkorová, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 4-5
container_start_page 407
container_title Plant molecular biology
container_volume 97
creator Dokládal, Ladislav
Benková, Eva
Honys, David
Dupľáková, Nikoleta
Lee, Lan-Ying
Gelvin, Stanton B.
Sýkorová, Eva
description Key message Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
doi_str_mv 10.1007/s11103-018-0747-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060876283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060876283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1367617dd0f183627065fa407bed89efb5b732960af4887a086eca239552c9123</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuX6uQ7PS6LX7DgRc8hbVPp2jZrkiL-e7N0VRA8zUzmed8ML0LnGK4xgLwJGGOgOWCVg2QyZwdojrmkOQeiDtEcsEiPDJMZOglhA5BUVByjGSkKpgQv5mi9HDLje1O3Xefy2vWmHbKtd9HuqvGxrdqtiTZkaTZZtJ3rrTfBpjmmpoqtG7LBxg_n307RUWO6YM_2dYFe7m6fVw_5-un-cbVc5xXDPOaYCimwrGtosKKCSBC8MQxkaWtV2KbkpaSkEGAappQ0oIStDKEF56QqMKELdDX5pkPfRxui7ttQ2a4zg3Vj0AQEKCmIogm9_INu3OiHdF2iOJWSAZOJwhNVeReCt43e-rY3_lNj0Luo9RS1TlHrXdSaJc3F3nkse1v_KL6zTQCZgJBWw6v1v1__7_oF8KeH0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053774047</pqid></control><display><type>article</type><title>An armadillo-domain protein participates in a telomerase interaction network</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Dokládal, Ladislav ; Benková, Eva ; Honys, David ; Dupľáková, Nikoleta ; Lee, Lan-Ying ; Gelvin, Stanton B. ; Sýkorová, Eva</creator><creatorcontrib>Dokládal, Ladislav ; Benková, Eva ; Honys, David ; Dupľáková, Nikoleta ; Lee, Lan-Ying ; Gelvin, Stanton B. ; Sýkorová, Eva</creatorcontrib><description>Key message Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-018-0747-4</identifier><identifier>PMID: 29948659</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Armadillo Domain Proteins - genetics ; Armadillo Domain Proteins - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Chromatin remodeling ; Complementation ; Deoxyribonucleic acid ; DNA ; DNA repair ; Genes, Reporter ; Holoenzymes ; Humans ; Immunoprecipitation ; Life Sciences ; Plant Pathology ; Plant Sciences ; Protein interaction ; Proteins ; RNA-directed DNA polymerase ; Telomerase ; Telomerase - genetics ; Telomerase - metabolism ; Telomerase reverse transcriptase ; Telomeres ; Transcription ; Two-Hybrid System Techniques ; Yeasts ; β-Catenin</subject><ispartof>Plant molecular biology, 2018-07, Vol.97 (4-5), p.407-420</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Plant Molecular Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1367617dd0f183627065fa407bed89efb5b732960af4887a086eca239552c9123</citedby><cites>FETCH-LOGICAL-c415t-1367617dd0f183627065fa407bed89efb5b732960af4887a086eca239552c9123</cites><orcidid>0000-0002-4048-034X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-018-0747-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-018-0747-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29948659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dokládal, Ladislav</creatorcontrib><creatorcontrib>Benková, Eva</creatorcontrib><creatorcontrib>Honys, David</creatorcontrib><creatorcontrib>Dupľáková, Nikoleta</creatorcontrib><creatorcontrib>Lee, Lan-Ying</creatorcontrib><creatorcontrib>Gelvin, Stanton B.</creatorcontrib><creatorcontrib>Sýkorová, Eva</creatorcontrib><title>An armadillo-domain protein participates in a telomerase interaction network</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.</description><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Armadillo Domain Proteins - genetics</subject><subject>Armadillo Domain Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin remodeling</subject><subject>Complementation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA repair</subject><subject>Genes, Reporter</subject><subject>Holoenzymes</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>RNA-directed DNA polymerase</subject><subject>Telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>Telomeres</subject><subject>Transcription</subject><subject>Two-Hybrid System Techniques</subject><subject>Yeasts</subject><subject>β-Catenin</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuX6uQ7PS6LX7DgRc8hbVPp2jZrkiL-e7N0VRA8zUzmed8ML0LnGK4xgLwJGGOgOWCVg2QyZwdojrmkOQeiDtEcsEiPDJMZOglhA5BUVByjGSkKpgQv5mi9HDLje1O3Xefy2vWmHbKtd9HuqvGxrdqtiTZkaTZZtJ3rrTfBpjmmpoqtG7LBxg_n307RUWO6YM_2dYFe7m6fVw_5-un-cbVc5xXDPOaYCimwrGtosKKCSBC8MQxkaWtV2KbkpaSkEGAappQ0oIStDKEF56QqMKELdDX5pkPfRxui7ttQ2a4zg3Vj0AQEKCmIogm9_INu3OiHdF2iOJWSAZOJwhNVeReCt43e-rY3_lNj0Luo9RS1TlHrXdSaJc3F3nkse1v_KL6zTQCZgJBWw6v1v1__7_oF8KeH0w</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Dokládal, Ladislav</creator><creator>Benková, Eva</creator><creator>Honys, David</creator><creator>Dupľáková, Nikoleta</creator><creator>Lee, Lan-Ying</creator><creator>Gelvin, Stanton B.</creator><creator>Sýkorová, Eva</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4048-034X</orcidid></search><sort><creationdate>20180701</creationdate><title>An armadillo-domain protein participates in a telomerase interaction network</title><author>Dokládal, Ladislav ; Benková, Eva ; Honys, David ; Dupľáková, Nikoleta ; Lee, Lan-Ying ; Gelvin, Stanton B. ; Sýkorová, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1367617dd0f183627065fa407bed89efb5b732960af4887a086eca239552c9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Armadillo Domain Proteins - genetics</topic><topic>Armadillo Domain Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin remodeling</topic><topic>Complementation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA repair</topic><topic>Genes, Reporter</topic><topic>Holoenzymes</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>RNA-directed DNA polymerase</topic><topic>Telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>Telomeres</topic><topic>Transcription</topic><topic>Two-Hybrid System Techniques</topic><topic>Yeasts</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dokládal, Ladislav</creatorcontrib><creatorcontrib>Benková, Eva</creatorcontrib><creatorcontrib>Honys, David</creatorcontrib><creatorcontrib>Dupľáková, Nikoleta</creatorcontrib><creatorcontrib>Lee, Lan-Ying</creatorcontrib><creatorcontrib>Gelvin, Stanton B.</creatorcontrib><creatorcontrib>Sýkorová, Eva</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dokládal, Ladislav</au><au>Benková, Eva</au><au>Honys, David</au><au>Dupľáková, Nikoleta</au><au>Lee, Lan-Ying</au><au>Gelvin, Stanton B.</au><au>Sýkorová, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An armadillo-domain protein participates in a telomerase interaction network</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>97</volume><issue>4-5</issue><spage>407</spage><epage>420</epage><pages>407-420</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29948659</pmid><doi>10.1007/s11103-018-0747-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4048-034X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2018-07, Vol.97 (4-5), p.407-420
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_2060876283
source MEDLINE; SpringerNature Journals
subjects Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Armadillo Domain Proteins - genetics
Armadillo Domain Proteins - metabolism
Biochemistry
Biomedical and Life Sciences
Chromatin remodeling
Complementation
Deoxyribonucleic acid
DNA
DNA repair
Genes, Reporter
Holoenzymes
Humans
Immunoprecipitation
Life Sciences
Plant Pathology
Plant Sciences
Protein interaction
Proteins
RNA-directed DNA polymerase
Telomerase
Telomerase - genetics
Telomerase - metabolism
Telomerase reverse transcriptase
Telomeres
Transcription
Two-Hybrid System Techniques
Yeasts
β-Catenin
title An armadillo-domain protein participates in a telomerase interaction network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T06%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20armadillo-domain%20protein%20participates%20in%20a%20telomerase%20interaction%20network&rft.jtitle=Plant%20molecular%20biology&rft.au=Dokl%C3%A1dal,%20Ladislav&rft.date=2018-07-01&rft.volume=97&rft.issue=4-5&rft.spage=407&rft.epage=420&rft.pages=407-420&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-018-0747-4&rft_dat=%3Cproquest_cross%3E2060876283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2053774047&rft_id=info:pmid/29948659&rfr_iscdi=true