In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate
Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) mo...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2019-01, Vol.40 (2), p.e1800332-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e1800332 |
container_title | Macromolecular rapid communications. |
container_volume | 40 |
creator | Wang, Jian Wu, Zhigang Wang, Guowei Matyjaszewski, Krzysztof |
description | Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system.
Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out. |
doi_str_mv | 10.1002/marc.201800332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060870515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060870515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</originalsourceid><addsrcrecordid>eNqFkctu1DAUQC1ERUthyxJZYsMmUz8SO15GozIdqS3VdFhbHucGXBxnsBNQuuIT-Ea-pImmFIkNK19Lx0fWPQi9oWRBCWFnrYl2wQgtCeGcPUMntGA044rJ59NMGMso5-IYvUzpjhBS5oS9QMdMqVwSwU_QuA741vUDXsYuJe_CVxc-467B1yZ0exN7Zz0k7AK-6fzYQnT3pndd-P3z1zrUg4Ua34JvpmuVErQ7P-LvzuBqszrf4mq7uZldKz9aV48eX0H_xdg4etPDK3TUGJ_g9eN5ij59ON8uL7LLj6v1srrMbC4Fy0BwaXhZMgbG8LqxtuSGElqraWiosEIaZgulatgxLkEURhipODe7PJdU8lP0_uDdx-7bAKnXrUsWvDcBuiFpRgQpJSloMaHv_kHvuiGG6XeaUVESoYSahYsDZeeVRWj0Prqpw6gp0XMUPUfRT1GmB28ftcOuhfoJ_1NhAtQB-OE8jP_R6atqs_wrfwDt5Jpm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168069697</pqid></control><display><type>article</type><title>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jian ; Wu, Zhigang ; Wang, Guowei ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Wang, Jian ; Wu, Zhigang ; Wang, Guowei ; Matyjaszewski, Krzysztof</creatorcontrib><description>Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system.
Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201800332</identifier><identifier>PMID: 29947063</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylates - chemistry ; Assembly ; atom transfer radical polymerization (ATRP) ; Bromides - chemistry ; Catalysis ; Catalysts ; Chemistry Techniques, Synthetic - methods ; Copper - chemistry ; Cross-Linking Reagents - chemistry ; Crosslinking ; Epoxy Compounds - chemistry ; Ethanol ; Ethanol - chemistry ; Ethylene oxide ; glycidyl methacrylate (GMA) ; Kinetics ; Light scattering ; Methacrylates - chemistry ; Microscopy, Electron, Transmission ; Models, Chemical ; Molecular Structure ; Monomers ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Photon correlation spectroscopy ; Polyethylene Glycols - chemistry ; Polyethylene oxide ; Polymerization ; polymerization induced self‐assembly (PISA) ; Polymers - chemical synthesis ; Polymers - chemistry ; Reaction kinetics ; Reducing agents ; Reducing Agents - chemistry ; Ring opening polymerization ; Toluene ; Transmission electron microscopy</subject><ispartof>Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800332-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</citedby><cites>FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</cites><orcidid>0000-0003-1960-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201800332$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201800332$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29947063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Wang, Guowei</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system.
Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.</description><subject>Acrylates - chemistry</subject><subject>Assembly</subject><subject>atom transfer radical polymerization (ATRP)</subject><subject>Bromides - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Copper - chemistry</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Epoxy Compounds - chemistry</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Ethylene oxide</subject><subject>glycidyl methacrylate (GMA)</subject><subject>Kinetics</subject><subject>Light scattering</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Photon correlation spectroscopy</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene oxide</subject><subject>Polymerization</subject><subject>polymerization induced self‐assembly (PISA)</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Reaction kinetics</subject><subject>Reducing agents</subject><subject>Reducing Agents - chemistry</subject><subject>Ring opening polymerization</subject><subject>Toluene</subject><subject>Transmission electron microscopy</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUQC1ERUthyxJZYsMmUz8SO15GozIdqS3VdFhbHucGXBxnsBNQuuIT-Ea-pImmFIkNK19Lx0fWPQi9oWRBCWFnrYl2wQgtCeGcPUMntGA044rJ59NMGMso5-IYvUzpjhBS5oS9QMdMqVwSwU_QuA741vUDXsYuJe_CVxc-467B1yZ0exN7Zz0k7AK-6fzYQnT3pndd-P3z1zrUg4Ua34JvpmuVErQ7P-LvzuBqszrf4mq7uZldKz9aV48eX0H_xdg4etPDK3TUGJ_g9eN5ij59ON8uL7LLj6v1srrMbC4Fy0BwaXhZMgbG8LqxtuSGElqraWiosEIaZgulatgxLkEURhipODe7PJdU8lP0_uDdx-7bAKnXrUsWvDcBuiFpRgQpJSloMaHv_kHvuiGG6XeaUVESoYSahYsDZeeVRWj0Prqpw6gp0XMUPUfRT1GmB28ftcOuhfoJ_1NhAtQB-OE8jP_R6atqs_wrfwDt5Jpm</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, Jian</creator><creator>Wu, Zhigang</creator><creator>Wang, Guowei</creator><creator>Matyjaszewski, Krzysztof</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></search><sort><creationdate>201901</creationdate><title>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</title><author>Wang, Jian ; Wu, Zhigang ; Wang, Guowei ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylates - chemistry</topic><topic>Assembly</topic><topic>atom transfer radical polymerization (ATRP)</topic><topic>Bromides - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Copper - chemistry</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Epoxy Compounds - chemistry</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Ethylene oxide</topic><topic>glycidyl methacrylate (GMA)</topic><topic>Kinetics</topic><topic>Light scattering</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Photon correlation spectroscopy</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene oxide</topic><topic>Polymerization</topic><topic>polymerization induced self‐assembly (PISA)</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Reaction kinetics</topic><topic>Reducing agents</topic><topic>Reducing Agents - chemistry</topic><topic>Ring opening polymerization</topic><topic>Toluene</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Wang, Guowei</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Wu, Zhigang</au><au>Wang, Guowei</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2019-01</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>e1800332</spage><epage>n/a</epage><pages>e1800332-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system.
Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29947063</pmid><doi>10.1002/marc.201800332</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800332-n/a |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_2060870515 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acrylates - chemistry Assembly atom transfer radical polymerization (ATRP) Bromides - chemistry Catalysis Catalysts Chemistry Techniques, Synthetic - methods Copper - chemistry Cross-Linking Reagents - chemistry Crosslinking Epoxy Compounds - chemistry Ethanol Ethanol - chemistry Ethylene oxide glycidyl methacrylate (GMA) Kinetics Light scattering Methacrylates - chemistry Microscopy, Electron, Transmission Models, Chemical Molecular Structure Monomers Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure Photon correlation spectroscopy Polyethylene Glycols - chemistry Polyethylene oxide Polymerization polymerization induced self‐assembly (PISA) Polymers - chemical synthesis Polymers - chemistry Reaction kinetics Reducing agents Reducing Agents - chemistry Ring opening polymerization Toluene Transmission electron microscopy |
title | In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Crosslinking%20of%20Nanoparticles%20in%20Polymerization%E2%80%90Induced%20Self%E2%80%90Assembly%20via%20ARGET%20ATRP%20of%20Glycidyl%20Methacrylate&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Wang,%20Jian&rft.date=2019-01&rft.volume=40&rft.issue=2&rft.spage=e1800332&rft.epage=n/a&rft.pages=e1800332-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201800332&rft_dat=%3Cproquest_cross%3E2060870515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168069697&rft_id=info:pmid/29947063&rfr_iscdi=true |