In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate

Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2019-01, Vol.40 (2), p.e1800332-n/a
Hauptverfasser: Wang, Jian, Wu, Zhigang, Wang, Guowei, Matyjaszewski, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e1800332
container_title Macromolecular rapid communications.
container_volume 40
creator Wang, Jian
Wu, Zhigang
Wang, Guowei
Matyjaszewski, Krzysztof
description Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system. Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.
doi_str_mv 10.1002/marc.201800332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060870515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060870515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</originalsourceid><addsrcrecordid>eNqFkctu1DAUQC1ERUthyxJZYsMmUz8SO15GozIdqS3VdFhbHucGXBxnsBNQuuIT-Ea-pImmFIkNK19Lx0fWPQi9oWRBCWFnrYl2wQgtCeGcPUMntGA044rJ59NMGMso5-IYvUzpjhBS5oS9QMdMqVwSwU_QuA741vUDXsYuJe_CVxc-467B1yZ0exN7Zz0k7AK-6fzYQnT3pndd-P3z1zrUg4Ua34JvpmuVErQ7P-LvzuBqszrf4mq7uZldKz9aV48eX0H_xdg4etPDK3TUGJ_g9eN5ij59ON8uL7LLj6v1srrMbC4Fy0BwaXhZMgbG8LqxtuSGElqraWiosEIaZgulatgxLkEURhipODe7PJdU8lP0_uDdx-7bAKnXrUsWvDcBuiFpRgQpJSloMaHv_kHvuiGG6XeaUVESoYSahYsDZeeVRWj0Prqpw6gp0XMUPUfRT1GmB28ftcOuhfoJ_1NhAtQB-OE8jP_R6atqs_wrfwDt5Jpm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168069697</pqid></control><display><type>article</type><title>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jian ; Wu, Zhigang ; Wang, Guowei ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Wang, Jian ; Wu, Zhigang ; Wang, Guowei ; Matyjaszewski, Krzysztof</creatorcontrib><description>Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system. Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201800332</identifier><identifier>PMID: 29947063</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylates - chemistry ; Assembly ; atom transfer radical polymerization (ATRP) ; Bromides - chemistry ; Catalysis ; Catalysts ; Chemistry Techniques, Synthetic - methods ; Copper - chemistry ; Cross-Linking Reagents - chemistry ; Crosslinking ; Epoxy Compounds - chemistry ; Ethanol ; Ethanol - chemistry ; Ethylene oxide ; glycidyl methacrylate (GMA) ; Kinetics ; Light scattering ; Methacrylates - chemistry ; Microscopy, Electron, Transmission ; Models, Chemical ; Molecular Structure ; Monomers ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Photon correlation spectroscopy ; Polyethylene Glycols - chemistry ; Polyethylene oxide ; Polymerization ; polymerization induced self‐assembly (PISA) ; Polymers - chemical synthesis ; Polymers - chemistry ; Reaction kinetics ; Reducing agents ; Reducing Agents - chemistry ; Ring opening polymerization ; Toluene ; Transmission electron microscopy</subject><ispartof>Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800332-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</citedby><cites>FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</cites><orcidid>0000-0003-1960-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201800332$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201800332$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29947063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Wang, Guowei</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system. Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.</description><subject>Acrylates - chemistry</subject><subject>Assembly</subject><subject>atom transfer radical polymerization (ATRP)</subject><subject>Bromides - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Copper - chemistry</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Epoxy Compounds - chemistry</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Ethylene oxide</subject><subject>glycidyl methacrylate (GMA)</subject><subject>Kinetics</subject><subject>Light scattering</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Monomers</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Photon correlation spectroscopy</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene oxide</subject><subject>Polymerization</subject><subject>polymerization induced self‐assembly (PISA)</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Reaction kinetics</subject><subject>Reducing agents</subject><subject>Reducing Agents - chemistry</subject><subject>Ring opening polymerization</subject><subject>Toluene</subject><subject>Transmission electron microscopy</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUQC1ERUthyxJZYsMmUz8SO15GozIdqS3VdFhbHucGXBxnsBNQuuIT-Ea-pImmFIkNK19Lx0fWPQi9oWRBCWFnrYl2wQgtCeGcPUMntGA044rJ59NMGMso5-IYvUzpjhBS5oS9QMdMqVwSwU_QuA741vUDXsYuJe_CVxc-467B1yZ0exN7Zz0k7AK-6fzYQnT3pndd-P3z1zrUg4Ua34JvpmuVErQ7P-LvzuBqszrf4mq7uZldKz9aV48eX0H_xdg4etPDK3TUGJ_g9eN5ij59ON8uL7LLj6v1srrMbC4Fy0BwaXhZMgbG8LqxtuSGElqraWiosEIaZgulatgxLkEURhipODe7PJdU8lP0_uDdx-7bAKnXrUsWvDcBuiFpRgQpJSloMaHv_kHvuiGG6XeaUVESoYSahYsDZeeVRWj0Prqpw6gp0XMUPUfRT1GmB28ftcOuhfoJ_1NhAtQB-OE8jP_R6atqs_wrfwDt5Jpm</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, Jian</creator><creator>Wu, Zhigang</creator><creator>Wang, Guowei</creator><creator>Matyjaszewski, Krzysztof</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></search><sort><creationdate>201901</creationdate><title>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</title><author>Wang, Jian ; Wu, Zhigang ; Wang, Guowei ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-e637a38822eaa3dfcc83a101d9c83f16c67a2c599deb237e65a6a7933ab447173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylates - chemistry</topic><topic>Assembly</topic><topic>atom transfer radical polymerization (ATRP)</topic><topic>Bromides - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Copper - chemistry</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Epoxy Compounds - chemistry</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Ethylene oxide</topic><topic>glycidyl methacrylate (GMA)</topic><topic>Kinetics</topic><topic>Light scattering</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Monomers</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Photon correlation spectroscopy</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene oxide</topic><topic>Polymerization</topic><topic>polymerization induced self‐assembly (PISA)</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Reaction kinetics</topic><topic>Reducing agents</topic><topic>Reducing Agents - chemistry</topic><topic>Ring opening polymerization</topic><topic>Toluene</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Wang, Guowei</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Wu, Zhigang</au><au>Wang, Guowei</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2019-01</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>e1800332</spage><epage>n/a</epage><pages>e1800332-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0 = 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system. Based on the dual function of tin (2‐ethylhexanoate) (Sn(EH)2) agent as reducing agent for an activator regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) and as catalyst for ring‐opening reaction, the polymerization‐induced self‐assembly (PISA) of glycidyl methacrylate (GMA) monomer and subsequent in situ crosslinking of the formed nanoparticles are successfully carried out.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29947063</pmid><doi>10.1002/marc.201800332</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2019-01, Vol.40 (2), p.e1800332-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2060870515
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acrylates - chemistry
Assembly
atom transfer radical polymerization (ATRP)
Bromides - chemistry
Catalysis
Catalysts
Chemistry Techniques, Synthetic - methods
Copper - chemistry
Cross-Linking Reagents - chemistry
Crosslinking
Epoxy Compounds - chemistry
Ethanol
Ethanol - chemistry
Ethylene oxide
glycidyl methacrylate (GMA)
Kinetics
Light scattering
Methacrylates - chemistry
Microscopy, Electron, Transmission
Models, Chemical
Molecular Structure
Monomers
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Photon correlation spectroscopy
Polyethylene Glycols - chemistry
Polyethylene oxide
Polymerization
polymerization induced self‐assembly (PISA)
Polymers - chemical synthesis
Polymers - chemistry
Reaction kinetics
Reducing agents
Reducing Agents - chemistry
Ring opening polymerization
Toluene
Transmission electron microscopy
title In Situ Crosslinking of Nanoparticles in Polymerization‐Induced Self‐Assembly via ARGET ATRP of Glycidyl Methacrylate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Crosslinking%20of%20Nanoparticles%20in%20Polymerization%E2%80%90Induced%20Self%E2%80%90Assembly%20via%20ARGET%20ATRP%20of%20Glycidyl%20Methacrylate&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Wang,%20Jian&rft.date=2019-01&rft.volume=40&rft.issue=2&rft.spage=e1800332&rft.epage=n/a&rft.pages=e1800332-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201800332&rft_dat=%3Cproquest_cross%3E2060870515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168069697&rft_id=info:pmid/29947063&rfr_iscdi=true