Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana
To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were respon...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2008-04, Vol.279 (4), p.339-357, Article 339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 4 |
container_start_page | 339 |
container_title | Molecular genetics and genomics : MGG |
container_volume | 279 |
creator | Kumari, Manjeet Taylor, Gregory J Deyholos, Michael K |
description | To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants. |
doi_str_mv | 10.1007/s00438-007-0316-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20606939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20606939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</originalsourceid><addsrcrecordid>eNp9kDtv3DAQhAkjhu_8-AFpEsFFOtnLh0iqPBhxHOAAF7ZrgieRDg-SqHClIv715kGHJEgRNhxwvxkuhpCPFG4ogLpFAMF1mWUJnMry7YSsqaSqFJLxD781rVbkHHEPQJVk6oysqGYKlKBrsn1OdsAmhXGKfWiK5HCMAzospljYbu7DMPcFTvkdizAUKcYJi-iLTbK70MYRQ0Z_2C7YwV6SU287dFfH-4K83H99vnsot4_fvt9ttmUjmJhKJlrwLWu9qlQLO-0bqbmm3HHLlaudq3XlpeMC8nFce-4taHCqrVjTguUX5MuSO6b4c3Y4mT5g47rODi7OaBhIkDWvM3j9D7iPcxrybobWgkpRsQNEF6hJETE5b8YUept-GQrm0LNZejYHeejZvGXPp2PwvOtd-8dxLDYDbAEwj4ZXl_76-T-pnxeTt9HY1xTQvDwxoBxA61rUlL8DZMaSSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194164529</pqid></control><display><type>article</type><title>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kumari, Manjeet ; Taylor, Gregory J ; Deyholos, Michael K</creator><creatorcontrib>Kumari, Manjeet ; Taylor, Gregory J ; Deyholos, Michael K</creatorcontrib><description>To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-007-0316-z</identifier><identifier>PMID: 18270741</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Abiotic stress ; Aluminum ; Aluminum - toxicity ; Animal Genetics and Genomics ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Cell Wall - metabolism ; Crops ; DNA Primers - genetics ; DNA, Plant - genetics ; Energy Metabolism - genetics ; Gene Expression - drug effects ; Gene Expression Profiling ; Genes, Plant - drug effects ; Genomes ; Genomics ; Human Genetics ; Kinases ; Life Sciences ; Membrane Transport Proteins - genetics ; Metabolism ; Microbial Genetics and Genomics ; Oligonucleotide Array Sequence Analysis ; Original Paper ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Plant Genetics and Genomics ; Plant Growth Regulators - genetics ; Plant Roots - drug effects ; Plant Roots - metabolism ; Polysaccharides - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Seeds ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Toxicity ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>Molecular genetics and genomics : MGG, 2008-04, Vol.279 (4), p.339-357, Article 339</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</citedby><cites>FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-007-0316-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-007-0316-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18270741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumari, Manjeet</creatorcontrib><creatorcontrib>Taylor, Gregory J</creatorcontrib><creatorcontrib>Deyholos, Michael K</creatorcontrib><title>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.</description><subject>Abiotic stress</subject><subject>Aluminum</subject><subject>Aluminum - toxicity</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Wall - metabolism</subject><subject>Crops</subject><subject>DNA Primers - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression Profiling</subject><subject>Genes, Plant - drug effects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original Paper</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Growth Regulators - genetics</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - metabolism</subject><subject>Polysaccharides - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Seeds</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Toxicity</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtv3DAQhAkjhu_8-AFpEsFFOtnLh0iqPBhxHOAAF7ZrgieRDg-SqHClIv715kGHJEgRNhxwvxkuhpCPFG4ogLpFAMF1mWUJnMry7YSsqaSqFJLxD781rVbkHHEPQJVk6oysqGYKlKBrsn1OdsAmhXGKfWiK5HCMAzospljYbu7DMPcFTvkdizAUKcYJi-iLTbK70MYRQ0Z_2C7YwV6SU287dFfH-4K83H99vnsot4_fvt9ttmUjmJhKJlrwLWu9qlQLO-0bqbmm3HHLlaudq3XlpeMC8nFce-4taHCqrVjTguUX5MuSO6b4c3Y4mT5g47rODi7OaBhIkDWvM3j9D7iPcxrybobWgkpRsQNEF6hJETE5b8YUept-GQrm0LNZejYHeejZvGXPp2PwvOtd-8dxLDYDbAEwj4ZXl_76-T-pnxeTt9HY1xTQvDwxoBxA61rUlL8DZMaSSg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Kumari, Manjeet</creator><creator>Taylor, Gregory J</creator><creator>Deyholos, Michael K</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope></search><sort><creationdate>20080401</creationdate><title>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</title><author>Kumari, Manjeet ; Taylor, Gregory J ; Deyholos, Michael K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Abiotic stress</topic><topic>Aluminum</topic><topic>Aluminum - toxicity</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Wall - metabolism</topic><topic>Crops</topic><topic>DNA Primers - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression Profiling</topic><topic>Genes, Plant - drug effects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original Paper</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Growth Regulators - genetics</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - metabolism</topic><topic>Polysaccharides - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Seeds</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Toxicity</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Manjeet</creatorcontrib><creatorcontrib>Taylor, Gregory J</creatorcontrib><creatorcontrib>Deyholos, Michael K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Manjeet</au><au>Taylor, Gregory J</au><au>Deyholos, Michael K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>279</volume><issue>4</issue><spage>339</spage><epage>357</epage><pages>339-357</pages><artnum>339</artnum><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18270741</pmid><doi>10.1007/s00438-007-0316-z</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4615 |
ispartof | Molecular genetics and genomics : MGG, 2008-04, Vol.279 (4), p.339-357, Article 339 |
issn | 1617-4615 1617-4623 |
language | eng |
recordid | cdi_proquest_miscellaneous_20606939 |
source | MEDLINE; SpringerLink Journals |
subjects | Abiotic stress Aluminum Aluminum - toxicity Animal Genetics and Genomics Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Base Sequence Biochemistry Biomedical and Life Sciences Cell Wall - metabolism Crops DNA Primers - genetics DNA, Plant - genetics Energy Metabolism - genetics Gene Expression - drug effects Gene Expression Profiling Genes, Plant - drug effects Genomes Genomics Human Genetics Kinases Life Sciences Membrane Transport Proteins - genetics Metabolism Microbial Genetics and Genomics Oligonucleotide Array Sequence Analysis Original Paper Oxidative stress Oxidative Stress - drug effects Oxidative Stress - genetics Plant Genetics and Genomics Plant Growth Regulators - genetics Plant Roots - drug effects Plant Roots - metabolism Polysaccharides - metabolism Reverse Transcriptase Polymerase Chain Reaction Seeds Signal Transduction - drug effects Signal Transduction - genetics Toxicity Transcription factors Transcription Factors - genetics |
title | Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomic%20responses%20to%20aluminum%20stress%20in%20roots%20of%20Arabidopsis%20thaliana&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Kumari,%20Manjeet&rft.date=2008-04-01&rft.volume=279&rft.issue=4&rft.spage=339&rft.epage=357&rft.pages=339-357&rft.artnum=339&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-007-0316-z&rft_dat=%3Cproquest_cross%3E20606939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194164529&rft_id=info:pmid/18270741&rfr_iscdi=true |