Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana

To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2008-04, Vol.279 (4), p.339-357, Article 339
Hauptverfasser: Kumari, Manjeet, Taylor, Gregory J, Deyholos, Michael K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 4
container_start_page 339
container_title Molecular genetics and genomics : MGG
container_volume 279
creator Kumari, Manjeet
Taylor, Gregory J
Deyholos, Michael K
description To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.
doi_str_mv 10.1007/s00438-007-0316-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20606939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20606939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</originalsourceid><addsrcrecordid>eNp9kDtv3DAQhAkjhu_8-AFpEsFFOtnLh0iqPBhxHOAAF7ZrgieRDg-SqHClIv715kGHJEgRNhxwvxkuhpCPFG4ogLpFAMF1mWUJnMry7YSsqaSqFJLxD781rVbkHHEPQJVk6oysqGYKlKBrsn1OdsAmhXGKfWiK5HCMAzospljYbu7DMPcFTvkdizAUKcYJi-iLTbK70MYRQ0Z_2C7YwV6SU287dFfH-4K83H99vnsot4_fvt9ttmUjmJhKJlrwLWu9qlQLO-0bqbmm3HHLlaudq3XlpeMC8nFce-4taHCqrVjTguUX5MuSO6b4c3Y4mT5g47rODi7OaBhIkDWvM3j9D7iPcxrybobWgkpRsQNEF6hJETE5b8YUept-GQrm0LNZejYHeejZvGXPp2PwvOtd-8dxLDYDbAEwj4ZXl_76-T-pnxeTt9HY1xTQvDwxoBxA61rUlL8DZMaSSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194164529</pqid></control><display><type>article</type><title>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kumari, Manjeet ; Taylor, Gregory J ; Deyholos, Michael K</creator><creatorcontrib>Kumari, Manjeet ; Taylor, Gregory J ; Deyholos, Michael K</creatorcontrib><description>To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-007-0316-z</identifier><identifier>PMID: 18270741</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Abiotic stress ; Aluminum ; Aluminum - toxicity ; Animal Genetics and Genomics ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Cell Wall - metabolism ; Crops ; DNA Primers - genetics ; DNA, Plant - genetics ; Energy Metabolism - genetics ; Gene Expression - drug effects ; Gene Expression Profiling ; Genes, Plant - drug effects ; Genomes ; Genomics ; Human Genetics ; Kinases ; Life Sciences ; Membrane Transport Proteins - genetics ; Metabolism ; Microbial Genetics and Genomics ; Oligonucleotide Array Sequence Analysis ; Original Paper ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Plant Genetics and Genomics ; Plant Growth Regulators - genetics ; Plant Roots - drug effects ; Plant Roots - metabolism ; Polysaccharides - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Seeds ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Toxicity ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>Molecular genetics and genomics : MGG, 2008-04, Vol.279 (4), p.339-357, Article 339</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</citedby><cites>FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-007-0316-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-007-0316-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18270741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumari, Manjeet</creatorcontrib><creatorcontrib>Taylor, Gregory J</creatorcontrib><creatorcontrib>Deyholos, Michael K</creatorcontrib><title>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.</description><subject>Abiotic stress</subject><subject>Aluminum</subject><subject>Aluminum - toxicity</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Wall - metabolism</subject><subject>Crops</subject><subject>DNA Primers - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression Profiling</subject><subject>Genes, Plant - drug effects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original Paper</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Growth Regulators - genetics</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - metabolism</subject><subject>Polysaccharides - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Seeds</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Toxicity</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtv3DAQhAkjhu_8-AFpEsFFOtnLh0iqPBhxHOAAF7ZrgieRDg-SqHClIv715kGHJEgRNhxwvxkuhpCPFG4ogLpFAMF1mWUJnMry7YSsqaSqFJLxD781rVbkHHEPQJVk6oysqGYKlKBrsn1OdsAmhXGKfWiK5HCMAzospljYbu7DMPcFTvkdizAUKcYJi-iLTbK70MYRQ0Z_2C7YwV6SU287dFfH-4K83H99vnsot4_fvt9ttmUjmJhKJlrwLWu9qlQLO-0bqbmm3HHLlaudq3XlpeMC8nFce-4taHCqrVjTguUX5MuSO6b4c3Y4mT5g47rODi7OaBhIkDWvM3j9D7iPcxrybobWgkpRsQNEF6hJETE5b8YUept-GQrm0LNZejYHeejZvGXPp2PwvOtd-8dxLDYDbAEwj4ZXl_76-T-pnxeTt9HY1xTQvDwxoBxA61rUlL8DZMaSSg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Kumari, Manjeet</creator><creator>Taylor, Gregory J</creator><creator>Deyholos, Michael K</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope></search><sort><creationdate>20080401</creationdate><title>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</title><author>Kumari, Manjeet ; Taylor, Gregory J ; Deyholos, Michael K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-24d0fd2df757d0b8fc683813e3a37e9ee985f6e340000e38f3fa080e7d52cd0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Abiotic stress</topic><topic>Aluminum</topic><topic>Aluminum - toxicity</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Wall - metabolism</topic><topic>Crops</topic><topic>DNA Primers - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression Profiling</topic><topic>Genes, Plant - drug effects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original Paper</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Growth Regulators - genetics</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - metabolism</topic><topic>Polysaccharides - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Seeds</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Toxicity</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Manjeet</creatorcontrib><creatorcontrib>Taylor, Gregory J</creatorcontrib><creatorcontrib>Deyholos, Michael K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Manjeet</au><au>Taylor, Gregory J</au><au>Deyholos, Michael K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>279</volume><issue>4</issue><spage>339</spage><epage>357</epage><pages>339-357</pages><artnum>339</artnum><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>To help characterize the cellular mechanisms underlying the toxicity of Al to plants, we present the first large-scale, transcriptomic analysis of root responses to Al, using a microarray representing approximately 93% of the predicted genes in the genome of Arabidopsis. More transcripts were responsive to Al (25 μM) during long (48 h, 1,114 genes), as compared to short (6 h, 401 genes) exposures, which contrasts with previous microarray analyses of plant responses to other types of abiotic stress. Exposure to Al triggered changes in the transcript levels for several genes related to oxidative stress pathway, membrane transporters, cell wall, energy, and polysaccharide metabolism. Interestingly, lack of abundance of transcripts encoding TCA cycle enzymes, except for malate dehydrogenase, suggested that synthesis of organic anions in response to Al may not be transcriptionally regulated. Al exposures induced differential abundance of transcripts for several ribosomal proteins, peptidases and protein phosphatases mostly after 48 h. We also detected increased abundance of transcripts for several membrane receptor kinases and non-membrane calcium response kinases, which could play a role in transmission of Al-stress signals. Among Al responsive transcription factors, the most predominant families identified were AP2/EREBP, MYB and bHLH. Further, we studied the kinetics of Al stress responses for class III peroxidases using Q-RT-PCR. Our results indicated that Al triggered dynamic changes in transcript abundance of various peroxidases within 1 h. The results of this screen contribute to the identification of candidate genes for the generation of Al-tolerant transgenic plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18270741</pmid><doi>10.1007/s00438-007-0316-z</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2008-04, Vol.279 (4), p.339-357, Article 339
issn 1617-4615
1617-4623
language eng
recordid cdi_proquest_miscellaneous_20606939
source MEDLINE; SpringerLink Journals
subjects Abiotic stress
Aluminum
Aluminum - toxicity
Animal Genetics and Genomics
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Base Sequence
Biochemistry
Biomedical and Life Sciences
Cell Wall - metabolism
Crops
DNA Primers - genetics
DNA, Plant - genetics
Energy Metabolism - genetics
Gene Expression - drug effects
Gene Expression Profiling
Genes, Plant - drug effects
Genomes
Genomics
Human Genetics
Kinases
Life Sciences
Membrane Transport Proteins - genetics
Metabolism
Microbial Genetics and Genomics
Oligonucleotide Array Sequence Analysis
Original Paper
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - genetics
Plant Genetics and Genomics
Plant Growth Regulators - genetics
Plant Roots - drug effects
Plant Roots - metabolism
Polysaccharides - metabolism
Reverse Transcriptase Polymerase Chain Reaction
Seeds
Signal Transduction - drug effects
Signal Transduction - genetics
Toxicity
Transcription factors
Transcription Factors - genetics
title Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomic%20responses%20to%20aluminum%20stress%20in%20roots%20of%20Arabidopsis%20thaliana&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Kumari,%20Manjeet&rft.date=2008-04-01&rft.volume=279&rft.issue=4&rft.spage=339&rft.epage=357&rft.pages=339-357&rft.artnum=339&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-007-0316-z&rft_dat=%3Cproquest_cross%3E20606939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194164529&rft_id=info:pmid/18270741&rfr_iscdi=true