Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template

[Display omitted] •Parg/DS capsules reduce their size and become denser in response to heating.•Thermal response is independent on initial size, layer number and layer sequence.•300 nm Parg/DS hollow capsules are achieved on CaCO3 sacrificial template.•Heating improves the colloidal stability of Par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2018-10, Vol.170, p.312-321
Hauptverfasser: Trushina, Daria B., Bukreeva, Tatiana V., Borodina, Tatiana N., Belova, Daria D., Belyakov, Sergei, Antipina, Maria N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue
container_start_page 312
container_title Colloids and surfaces, B, Biointerfaces
container_volume 170
creator Trushina, Daria B.
Bukreeva, Tatiana V.
Borodina, Tatiana N.
Belova, Daria D.
Belyakov, Sergei
Antipina, Maria N.
description [Display omitted] •Parg/DS capsules reduce their size and become denser in response to heating.•Thermal response is independent on initial size, layer number and layer sequence.•300 nm Parg/DS hollow capsules are achieved on CaCO3 sacrificial template.•Heating improves the colloidal stability of Parg/DS capsules’ suspensions. Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl.
doi_str_mv 10.1016/j.colsurfb.2018.06.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2059044016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776518304041</els_id><sourcerecordid>2059044016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6383cad6586d2981ef248134d38014ad37029308b3f1b3e68605d7c468fd816b3</originalsourceid><addsrcrecordid>eNqFkMFO4zAURa0RSFNgfgF5ySbhOU4ddweqgI6ExAbWlmO_DK6cOmM7ReXrx1VhPat3F_dc6R1CrhnUDJi43dYm-DTHoa8bYLIGUQPnP8iCyY5XLRfdGVnAqumqrhPLn-QipS0ANC3rFiRuUOfKRrfHHU3uE2lEO5vswo6GgfYuWPwTtdW9RzoFf0CPJscSMtJx9tl5fcBI34P34YMaPaXZY6I6JRwLY2kZWuv1C6cZx8nrjFfkfNA-4a-ve0neHh9e15vq-eXp9_r-uTJcNrkSXHKjrVhKYZuVZDg0rWS8tVwCa7XlHTQrDrLnA-s5CilgaTvTCjlYyUTPL8nNaXeK4e-MKavRJYPe6x2GOakGlito26KwVMWpamJIKeKgpuhGHQ-KgTpKVlv1LVkdJSsQqkgu4N0JxPLI3mFUyTjcGbQuFk_KBve_iX_Cu4rB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059044016</pqid></control><display><type>article</type><title>Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template</title><source>Elsevier ScienceDirect Journals</source><creator>Trushina, Daria B. ; Bukreeva, Tatiana V. ; Borodina, Tatiana N. ; Belova, Daria D. ; Belyakov, Sergei ; Antipina, Maria N.</creator><creatorcontrib>Trushina, Daria B. ; Bukreeva, Tatiana V. ; Borodina, Tatiana N. ; Belova, Daria D. ; Belyakov, Sergei ; Antipina, Maria N.</creatorcontrib><description>[Display omitted] •Parg/DS capsules reduce their size and become denser in response to heating.•Thermal response is independent on initial size, layer number and layer sequence.•300 nm Parg/DS hollow capsules are achieved on CaCO3 sacrificial template.•Heating improves the colloidal stability of Parg/DS capsules’ suspensions. Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2018.06.033</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biodegradable polymers ; Compaction ; Heat-Driven size reduction ; Layer-by-layer (LbL) self-assembly ; Nanocapsule</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2018-10, Vol.170, p.312-321</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6383cad6586d2981ef248134d38014ad37029308b3f1b3e68605d7c468fd816b3</citedby><cites>FETCH-LOGICAL-c382t-6383cad6586d2981ef248134d38014ad37029308b3f1b3e68605d7c468fd816b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776518304041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Trushina, Daria B.</creatorcontrib><creatorcontrib>Bukreeva, Tatiana V.</creatorcontrib><creatorcontrib>Borodina, Tatiana N.</creatorcontrib><creatorcontrib>Belova, Daria D.</creatorcontrib><creatorcontrib>Belyakov, Sergei</creatorcontrib><creatorcontrib>Antipina, Maria N.</creatorcontrib><title>Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template</title><title>Colloids and surfaces, B, Biointerfaces</title><description>[Display omitted] •Parg/DS capsules reduce their size and become denser in response to heating.•Thermal response is independent on initial size, layer number and layer sequence.•300 nm Parg/DS hollow capsules are achieved on CaCO3 sacrificial template.•Heating improves the colloidal stability of Parg/DS capsules’ suspensions. Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl.</description><subject>Biodegradable polymers</subject><subject>Compaction</subject><subject>Heat-Driven size reduction</subject><subject>Layer-by-layer (LbL) self-assembly</subject><subject>Nanocapsule</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO4zAURa0RSFNgfgF5ySbhOU4ddweqgI6ExAbWlmO_DK6cOmM7ReXrx1VhPat3F_dc6R1CrhnUDJi43dYm-DTHoa8bYLIGUQPnP8iCyY5XLRfdGVnAqumqrhPLn-QipS0ANC3rFiRuUOfKRrfHHU3uE2lEO5vswo6GgfYuWPwTtdW9RzoFf0CPJscSMtJx9tl5fcBI34P34YMaPaXZY6I6JRwLY2kZWuv1C6cZx8nrjFfkfNA-4a-ve0neHh9e15vq-eXp9_r-uTJcNrkSXHKjrVhKYZuVZDg0rWS8tVwCa7XlHTQrDrLnA-s5CilgaTvTCjlYyUTPL8nNaXeK4e-MKavRJYPe6x2GOakGlito26KwVMWpamJIKeKgpuhGHQ-KgTpKVlv1LVkdJSsQqkgu4N0JxPLI3mFUyTjcGbQuFk_KBve_iX_Cu4rB</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Trushina, Daria B.</creator><creator>Bukreeva, Tatiana V.</creator><creator>Borodina, Tatiana N.</creator><creator>Belova, Daria D.</creator><creator>Belyakov, Sergei</creator><creator>Antipina, Maria N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20181001</creationdate><title>Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template</title><author>Trushina, Daria B. ; Bukreeva, Tatiana V. ; Borodina, Tatiana N. ; Belova, Daria D. ; Belyakov, Sergei ; Antipina, Maria N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6383cad6586d2981ef248134d38014ad37029308b3f1b3e68605d7c468fd816b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biodegradable polymers</topic><topic>Compaction</topic><topic>Heat-Driven size reduction</topic><topic>Layer-by-layer (LbL) self-assembly</topic><topic>Nanocapsule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trushina, Daria B.</creatorcontrib><creatorcontrib>Bukreeva, Tatiana V.</creatorcontrib><creatorcontrib>Borodina, Tatiana N.</creatorcontrib><creatorcontrib>Belova, Daria D.</creatorcontrib><creatorcontrib>Belyakov, Sergei</creatorcontrib><creatorcontrib>Antipina, Maria N.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trushina, Daria B.</au><au>Bukreeva, Tatiana V.</au><au>Borodina, Tatiana N.</au><au>Belova, Daria D.</au><au>Belyakov, Sergei</au><au>Antipina, Maria N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>170</volume><spage>312</spage><epage>321</epage><pages>312-321</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] •Parg/DS capsules reduce their size and become denser in response to heating.•Thermal response is independent on initial size, layer number and layer sequence.•300 nm Parg/DS hollow capsules are achieved on CaCO3 sacrificial template.•Heating improves the colloidal stability of Parg/DS capsules’ suspensions. Aiming to explore elevated temperatures as a tool for miniaturization of biodegradable polymer multilayer capsules, assembled on spherical vaterite micron- and submicron-sized particles, we subject the shells composed of dextran sulfate (DS) and poly-L-arginine (Parg) to a heat treatment. Changes of the capsule size are studied at various temperatures and ionic strengths of the continuous phase. Unlike some synthetic polymer multilayer shells (their response to heat treatment depends on the number of layers and their arrangement), the biodegradable Parg/DS capsules exhibit size reduction and profound compaction regardless of their initial size, number of polymer layers and polymer layer sequence. The capsule response to heat is stable at ionic strengths of the continuous phase not exceeding 0.1 M NaCl.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfb.2018.06.033</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2018-10, Vol.170, p.312-321
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_2059044016
source Elsevier ScienceDirect Journals
subjects Biodegradable polymers
Compaction
Heat-Driven size reduction
Layer-by-layer (LbL) self-assembly
Nanocapsule
title Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-driven%20size%20reduction%20of%20biodegradable%20polyelectrolyte%20multilayer%20hollow%20capsules%20assembled%20on%20CaCO3%20template&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Trushina,%20Daria%20B.&rft.date=2018-10-01&rft.volume=170&rft.spage=312&rft.epage=321&rft.pages=312-321&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2018.06.033&rft_dat=%3Cproquest_cross%3E2059044016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059044016&rft_id=info:pmid/&rft_els_id=S0927776518304041&rfr_iscdi=true