Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films

Microelectromechanical systems (MEMS) have become a ubiquitous part of a multitude of industries including transportation, communication, medical, and consumer products. The majority of commercial MEMS devices are produced from silicon using energy-intensive and harsh chemical processing. We report...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-07, Vol.10 (28), p.24116-24123
Hauptverfasser: Saha, Partha, Ansari, Naveed, Kitchens, Christopher L, Ashurst, W. Robert, Davis, Virginia A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24123
container_issue 28
container_start_page 24116
container_title ACS applied materials & interfaces
container_volume 10
creator Saha, Partha
Ansari, Naveed
Kitchens, Christopher L
Ashurst, W. Robert
Davis, Virginia A
description Microelectromechanical systems (MEMS) have become a ubiquitous part of a multitude of industries including transportation, communication, medical, and consumer products. The majority of commercial MEMS devices are produced from silicon using energy-intensive and harsh chemical processing. We report that actuatable standard MEMS devices such as cantilever beam arrays, doubly clamped beams, residual strain testers, and mechanical strength testers can be produced via low-temperature fabrication of shear-aligned cellulose nanocrystal (CNC) films. The devices had feature sizes as small as 6 μm and anisotropic mechanical properties. For 4 μm thick doubly clamped beams with the CNC aligned parallel to the devices’ long axes, the Young’s moduli averaged 51 GPa and the fracture strength averaged 1.1 GPa. These mechanical properties are within one-third of typical values for polysilicon devices. This new paradigm of producing MEMS devices from CNC extracted from waste biomass provides the simplicity and tunability of fluid-phase processing while enabling anisotropic mechanical properties on the order of those obtained in standard silicon MEMS.
doi_str_mv 10.1021/acsami.8b04985
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2059041850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059041850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-62ae3be1ebd519038469d2f80ce53baa3756bca94fcea2baf94054f4102922b13</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqWwMqKMCCnFn2k8VhUtSAUGYLZs5wKpnKTYydD_HqOEbkx3Ov3e072H0DXBc4Ipudc26Lqa5wZzmYsTNCWS8zSngp4ed84n6CKEHcYZo1icowmVkuU8X0zR5rmyvgUHtvNtDfZLN5XVLnk7hA7qkJTxmixd9dlAkazAud61AZIX3bTWRyai68rV4RKdldoFuBrnDH2sH95Xj-n2dfO0Wm5TzRju0oxqYAYImEIQieMTmSxomWMLghmt2UJkxmrJSwuaGl1KjgUvecwqKTWEzdDt4Lv37XcPoVN1FWz8SzfQ9kHFfBJzkgsc0fmAxoAheCjV3le19gdFsPotTw3lqbG8KLgZvXtTQ3HE_9qKwN0ARKHatb1vYtT_3H4Au9h6Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059041850</pqid></control><display><type>article</type><title>Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films</title><source>ACS Publications</source><creator>Saha, Partha ; Ansari, Naveed ; Kitchens, Christopher L ; Ashurst, W. Robert ; Davis, Virginia A</creator><creatorcontrib>Saha, Partha ; Ansari, Naveed ; Kitchens, Christopher L ; Ashurst, W. Robert ; Davis, Virginia A</creatorcontrib><description>Microelectromechanical systems (MEMS) have become a ubiquitous part of a multitude of industries including transportation, communication, medical, and consumer products. The majority of commercial MEMS devices are produced from silicon using energy-intensive and harsh chemical processing. We report that actuatable standard MEMS devices such as cantilever beam arrays, doubly clamped beams, residual strain testers, and mechanical strength testers can be produced via low-temperature fabrication of shear-aligned cellulose nanocrystal (CNC) films. The devices had feature sizes as small as 6 μm and anisotropic mechanical properties. For 4 μm thick doubly clamped beams with the CNC aligned parallel to the devices’ long axes, the Young’s moduli averaged 51 GPa and the fracture strength averaged 1.1 GPa. These mechanical properties are within one-third of typical values for polysilicon devices. This new paradigm of producing MEMS devices from CNC extracted from waste biomass provides the simplicity and tunability of fluid-phase processing while enabling anisotropic mechanical properties on the order of those obtained in standard silicon MEMS.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b04985</identifier><identifier>PMID: 29938487</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-07, Vol.10 (28), p.24116-24123</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-62ae3be1ebd519038469d2f80ce53baa3756bca94fcea2baf94054f4102922b13</citedby><cites>FETCH-LOGICAL-a330t-62ae3be1ebd519038469d2f80ce53baa3756bca94fcea2baf94054f4102922b13</cites><orcidid>0000-0002-3996-8882 ; 0000-0002-3221-5845 ; 0000-0003-3126-3893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b04985$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b04985$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29938487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saha, Partha</creatorcontrib><creatorcontrib>Ansari, Naveed</creatorcontrib><creatorcontrib>Kitchens, Christopher L</creatorcontrib><creatorcontrib>Ashurst, W. Robert</creatorcontrib><creatorcontrib>Davis, Virginia A</creatorcontrib><title>Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Microelectromechanical systems (MEMS) have become a ubiquitous part of a multitude of industries including transportation, communication, medical, and consumer products. The majority of commercial MEMS devices are produced from silicon using energy-intensive and harsh chemical processing. We report that actuatable standard MEMS devices such as cantilever beam arrays, doubly clamped beams, residual strain testers, and mechanical strength testers can be produced via low-temperature fabrication of shear-aligned cellulose nanocrystal (CNC) films. The devices had feature sizes as small as 6 μm and anisotropic mechanical properties. For 4 μm thick doubly clamped beams with the CNC aligned parallel to the devices’ long axes, the Young’s moduli averaged 51 GPa and the fracture strength averaged 1.1 GPa. These mechanical properties are within one-third of typical values for polysilicon devices. This new paradigm of producing MEMS devices from CNC extracted from waste biomass provides the simplicity and tunability of fluid-phase processing while enabling anisotropic mechanical properties on the order of those obtained in standard silicon MEMS.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqWwMqKMCCnFn2k8VhUtSAUGYLZs5wKpnKTYydD_HqOEbkx3Ov3e072H0DXBc4Ipudc26Lqa5wZzmYsTNCWS8zSngp4ed84n6CKEHcYZo1icowmVkuU8X0zR5rmyvgUHtvNtDfZLN5XVLnk7hA7qkJTxmixd9dlAkazAud61AZIX3bTWRyai68rV4RKdldoFuBrnDH2sH95Xj-n2dfO0Wm5TzRju0oxqYAYImEIQieMTmSxomWMLghmt2UJkxmrJSwuaGl1KjgUvecwqKTWEzdDt4Lv37XcPoVN1FWz8SzfQ9kHFfBJzkgsc0fmAxoAheCjV3le19gdFsPotTw3lqbG8KLgZvXtTQ3HE_9qKwN0ARKHatb1vYtT_3H4Au9h6Yg</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Saha, Partha</creator><creator>Ansari, Naveed</creator><creator>Kitchens, Christopher L</creator><creator>Ashurst, W. Robert</creator><creator>Davis, Virginia A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3996-8882</orcidid><orcidid>https://orcid.org/0000-0002-3221-5845</orcidid><orcidid>https://orcid.org/0000-0003-3126-3893</orcidid></search><sort><creationdate>20180718</creationdate><title>Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films</title><author>Saha, Partha ; Ansari, Naveed ; Kitchens, Christopher L ; Ashurst, W. Robert ; Davis, Virginia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-62ae3be1ebd519038469d2f80ce53baa3756bca94fcea2baf94054f4102922b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Partha</creatorcontrib><creatorcontrib>Ansari, Naveed</creatorcontrib><creatorcontrib>Kitchens, Christopher L</creatorcontrib><creatorcontrib>Ashurst, W. Robert</creatorcontrib><creatorcontrib>Davis, Virginia A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Partha</au><au>Ansari, Naveed</au><au>Kitchens, Christopher L</au><au>Ashurst, W. Robert</au><au>Davis, Virginia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>10</volume><issue>28</issue><spage>24116</spage><epage>24123</epage><pages>24116-24123</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Microelectromechanical systems (MEMS) have become a ubiquitous part of a multitude of industries including transportation, communication, medical, and consumer products. The majority of commercial MEMS devices are produced from silicon using energy-intensive and harsh chemical processing. We report that actuatable standard MEMS devices such as cantilever beam arrays, doubly clamped beams, residual strain testers, and mechanical strength testers can be produced via low-temperature fabrication of shear-aligned cellulose nanocrystal (CNC) films. The devices had feature sizes as small as 6 μm and anisotropic mechanical properties. For 4 μm thick doubly clamped beams with the CNC aligned parallel to the devices’ long axes, the Young’s moduli averaged 51 GPa and the fracture strength averaged 1.1 GPa. These mechanical properties are within one-third of typical values for polysilicon devices. This new paradigm of producing MEMS devices from CNC extracted from waste biomass provides the simplicity and tunability of fluid-phase processing while enabling anisotropic mechanical properties on the order of those obtained in standard silicon MEMS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29938487</pmid><doi>10.1021/acsami.8b04985</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3996-8882</orcidid><orcidid>https://orcid.org/0000-0002-3221-5845</orcidid><orcidid>https://orcid.org/0000-0003-3126-3893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-07, Vol.10 (28), p.24116-24123
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2059041850
source ACS Publications
title Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microelectromechanical%20Systems%20from%20Aligned%20Cellulose%20Nanocrystal%20Films&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Saha,%20Partha&rft.date=2018-07-18&rft.volume=10&rft.issue=28&rft.spage=24116&rft.epage=24123&rft.pages=24116-24123&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b04985&rft_dat=%3Cproquest_cross%3E2059041850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059041850&rft_id=info:pmid/29938487&rfr_iscdi=true