Segmentation of CT brain images using unsupervised clusterings
In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2009-01, Vol.12 (2), p.131-138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 2 |
container_start_page | 131 |
container_title | Journal of visualization |
container_volume | 12 |
creator | Lee, Tong Hau Fauzi, Mohammad Faizal Ahmad Komiya, Ryoichi |
description | In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results. |
doi_str_mv | 10.1007/BF03181955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20587858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20587858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</originalsourceid><addsrcrecordid>eNptkE1LxDAURYMoOI5u_AVZuVCq-WibdCPo4Kgw4GJmH9LmZejQaWteI_jvzTCCG1fvcjk8OJeQa87uOWPq4XnJJNe8KooTMuNaFZmuVHGassxlplNxTi4Qd4wJnis-I49r2O6hn-zUDj0dPF1saB1s29N2b7eANGLbb2nsMY4QvloER5su4gQh9XhJzrztEK5-75ysly-bxVu2-nh9XzytskZWcsoUaNeUXtUSNBPOVU5pAd5LUQkQVhVlk3PgKebe1zlzIGsHVonS8bqUc3Jz_DqG4TMCTmbfYgNdZ3sYIhrBCq10oRN4ewSbMCAG8GYMySN8G87MYSDzN1CC744wjgcXCGY3xNAnjf_oH9oKZsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20587858</pqid></control><display><type>article</type><title>Segmentation of CT brain images using unsupervised clusterings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Tong Hau ; Fauzi, Mohammad Faizal Ahmad ; Komiya, Ryoichi</creator><creatorcontrib>Lee, Tong Hau ; Fauzi, Mohammad Faizal Ahmad ; Komiya, Ryoichi</creatorcontrib><description>In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/BF03181955</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Pattern Recognition and Graphics ; Regular Paper ; Vision</subject><ispartof>Journal of visualization, 2009-01, Vol.12 (2), p.131-138</ispartof><rights>The Visualization Society of Japan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</citedby><cites>FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03181955$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03181955$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Tong Hau</creatorcontrib><creatorcontrib>Fauzi, Mohammad Faizal Ahmad</creatorcontrib><creatorcontrib>Komiya, Ryoichi</creatorcontrib><title>Segmentation of CT brain images using unsupervised clusterings</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAURYMoOI5u_AVZuVCq-WibdCPo4Kgw4GJmH9LmZejQaWteI_jvzTCCG1fvcjk8OJeQa87uOWPq4XnJJNe8KooTMuNaFZmuVHGassxlplNxTi4Qd4wJnis-I49r2O6hn-zUDj0dPF1saB1s29N2b7eANGLbb2nsMY4QvloER5su4gQh9XhJzrztEK5-75ysly-bxVu2-nh9XzytskZWcsoUaNeUXtUSNBPOVU5pAd5LUQkQVhVlk3PgKebe1zlzIGsHVonS8bqUc3Jz_DqG4TMCTmbfYgNdZ3sYIhrBCq10oRN4ewSbMCAG8GYMySN8G87MYSDzN1CC744wjgcXCGY3xNAnjf_oH9oKZsw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lee, Tong Hau</creator><creator>Fauzi, Mohammad Faizal Ahmad</creator><creator>Komiya, Ryoichi</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20090101</creationdate><title>Segmentation of CT brain images using unsupervised clusterings</title><author>Lee, Tong Hau ; Fauzi, Mohammad Faizal Ahmad ; Komiya, Ryoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tong Hau</creatorcontrib><creatorcontrib>Fauzi, Mohammad Faizal Ahmad</creatorcontrib><creatorcontrib>Komiya, Ryoichi</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Tong Hau</au><au>Fauzi, Mohammad Faizal Ahmad</au><au>Komiya, Ryoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of CT brain images using unsupervised clusterings</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>12</volume><issue>2</issue><spage>131</spage><epage>138</epage><pages>131-138</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/BF03181955</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2009-01, Vol.12 (2), p.131-138 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_miscellaneous_20587858 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Continuum Physics Computer Imaging Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Pattern Recognition and Graphics Regular Paper Vision |
title | Segmentation of CT brain images using unsupervised clusterings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20CT%20brain%20images%20using%20unsupervised%20clusterings&rft.jtitle=Journal%20of%20visualization&rft.au=Lee,%20Tong%20Hau&rft.date=2009-01-01&rft.volume=12&rft.issue=2&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/BF03181955&rft_dat=%3Cproquest_cross%3E20587858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20587858&rft_id=info:pmid/&rfr_iscdi=true |