Segmentation of CT brain images using unsupervised clusterings

In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2009-01, Vol.12 (2), p.131-138
Hauptverfasser: Lee, Tong Hau, Fauzi, Mohammad Faizal Ahmad, Komiya, Ryoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 2
container_start_page 131
container_title Journal of visualization
container_volume 12
creator Lee, Tong Hau
Fauzi, Mohammad Faizal Ahmad
Komiya, Ryoichi
description In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.
doi_str_mv 10.1007/BF03181955
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20587858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20587858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</originalsourceid><addsrcrecordid>eNptkE1LxDAURYMoOI5u_AVZuVCq-WibdCPo4Kgw4GJmH9LmZejQaWteI_jvzTCCG1fvcjk8OJeQa87uOWPq4XnJJNe8KooTMuNaFZmuVHGassxlplNxTi4Qd4wJnis-I49r2O6hn-zUDj0dPF1saB1s29N2b7eANGLbb2nsMY4QvloER5su4gQh9XhJzrztEK5-75ysly-bxVu2-nh9XzytskZWcsoUaNeUXtUSNBPOVU5pAd5LUQkQVhVlk3PgKebe1zlzIGsHVonS8bqUc3Jz_DqG4TMCTmbfYgNdZ3sYIhrBCq10oRN4ewSbMCAG8GYMySN8G87MYSDzN1CC744wjgcXCGY3xNAnjf_oH9oKZsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20587858</pqid></control><display><type>article</type><title>Segmentation of CT brain images using unsupervised clusterings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Tong Hau ; Fauzi, Mohammad Faizal Ahmad ; Komiya, Ryoichi</creator><creatorcontrib>Lee, Tong Hau ; Fauzi, Mohammad Faizal Ahmad ; Komiya, Ryoichi</creatorcontrib><description>In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/BF03181955</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Pattern Recognition and Graphics ; Regular Paper ; Vision</subject><ispartof>Journal of visualization, 2009-01, Vol.12 (2), p.131-138</ispartof><rights>The Visualization Society of Japan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</citedby><cites>FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03181955$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03181955$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Tong Hau</creatorcontrib><creatorcontrib>Fauzi, Mohammad Faizal Ahmad</creatorcontrib><creatorcontrib>Komiya, Ryoichi</creatorcontrib><title>Segmentation of CT brain images using unsupervised clusterings</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAURYMoOI5u_AVZuVCq-WibdCPo4Kgw4GJmH9LmZejQaWteI_jvzTCCG1fvcjk8OJeQa87uOWPq4XnJJNe8KooTMuNaFZmuVHGassxlplNxTi4Qd4wJnis-I49r2O6hn-zUDj0dPF1saB1s29N2b7eANGLbb2nsMY4QvloER5su4gQh9XhJzrztEK5-75ysly-bxVu2-nh9XzytskZWcsoUaNeUXtUSNBPOVU5pAd5LUQkQVhVlk3PgKebe1zlzIGsHVonS8bqUc3Jz_DqG4TMCTmbfYgNdZ3sYIhrBCq10oRN4ewSbMCAG8GYMySN8G87MYSDzN1CC744wjgcXCGY3xNAnjf_oH9oKZsw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lee, Tong Hau</creator><creator>Fauzi, Mohammad Faizal Ahmad</creator><creator>Komiya, Ryoichi</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20090101</creationdate><title>Segmentation of CT brain images using unsupervised clusterings</title><author>Lee, Tong Hau ; Fauzi, Mohammad Faizal Ahmad ; Komiya, Ryoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-7e8dc6f7b3e802dd9d782eff3292e2a756c41e1e2a4ffb40de3bdea726d1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tong Hau</creatorcontrib><creatorcontrib>Fauzi, Mohammad Faizal Ahmad</creatorcontrib><creatorcontrib>Komiya, Ryoichi</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Tong Hau</au><au>Fauzi, Mohammad Faizal Ahmad</au><au>Komiya, Ryoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of CT brain images using unsupervised clusterings</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>12</volume><issue>2</issue><spage>131</spage><epage>138</epage><pages>131-138</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>In this paper, we present non-identical unsupervised clustering techniques for the segmentation of CT brain images. Prior to segmentation, we enhance the visualization of the original image. Generally, for the presence of abnormal regions in the brain images, we partition them into 3 segments, which are the abnormal regions itself, the cerebrospinal fluid (CSF) and the brain matter. However, for the absence of abnormal regions in the brain images, the final segmented regions will consist of CSF and brain matter only. Therefore, our system is divided into two stages of clustering. The initial clustering technique is for the detection of the abnormal regions. The later clustering technique is for the segmentation of the CSF and brain matter. The system has been tested with a number of real CT head images and has achieved satisfactory results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/BF03181955</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2009-01, Vol.12 (2), p.131-138
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_miscellaneous_20587858
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Computer Imaging
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Pattern Recognition and Graphics
Regular Paper
Vision
title Segmentation of CT brain images using unsupervised clusterings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20CT%20brain%20images%20using%20unsupervised%20clusterings&rft.jtitle=Journal%20of%20visualization&rft.au=Lee,%20Tong%20Hau&rft.date=2009-01-01&rft.volume=12&rft.issue=2&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/BF03181955&rft_dat=%3Cproquest_cross%3E20587858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20587858&rft_id=info:pmid/&rfr_iscdi=true