Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics

Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-07, Vol.12 (7), p.6577-6587
Hauptverfasser: Zafar, Sufi, D’Emic, Christopher, Jagtiani, Ashish, Kratschmer, Ernst, Miao, Xin, Zhu, Yu, Mo, Renee, Sosa, Norma, Hamann, Hendrik, Shahidi, Ghavam, Riel, Heike
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6587
container_issue 7
container_start_page 6577
container_title ACS nano
container_volume 12
creator Zafar, Sufi
D’Emic, Christopher
Jagtiani, Ashish
Kratschmer, Ernst
Miao, Xin
Zhu, Yu
Mo, Renee
Sosa, Norma
Hamann, Hendrik
Shahidi, Ghavam
Riel, Heike
description Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.
doi_str_mv 10.1021/acsnano.8b01339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2058508727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058508727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</originalsourceid><addsrcrecordid>eNp1kElLBDEQRoMoLqNnb5KjIK1ZekmOMriBy2FUvDXV6Won0pNo0oN48bcbndabEEhRvHrwfYTsc3bMmeAnYKID549Vw7iUeo1scy3LjKnyaf1vLvgW2YnxhbGiUlW5SbaE1lKUMt8mnzPbW-MdvU2adxuQnlvsW3rWdWgGeh_ARRsHH-gMXfQh0nc7zOmNdXYB_bjMBp-tJvoIwcJgvYsUXNK4OTiD7Q9o3TOdziGAGTAkqTVxl2x00EfcG_8JeTg_u59eZtd3F1fT0-sMpJRDVqLpsNWaV0Jq6ARLj-WV5gJANG3X5iLFVKLIlSyUYgKxaaBrW51joznICTlceV-Df1tiHOqFjQb7Hhz6ZawFK1TBVCWqhJ6sUBN8jAG7-jWkrOGj5qz-Lr0eS6_H0tPFwShfNgts__jflhNwtALSZf3il8GlrP_qvgA-Do_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058508727</pqid></control><display><type>article</type><title>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</title><source>American Chemical Society (ACS) Journals</source><creator>Zafar, Sufi ; D’Emic, Christopher ; Jagtiani, Ashish ; Kratschmer, Ernst ; Miao, Xin ; Zhu, Yu ; Mo, Renee ; Sosa, Norma ; Hamann, Hendrik ; Shahidi, Ghavam ; Riel, Heike</creator><creatorcontrib>Zafar, Sufi ; D’Emic, Christopher ; Jagtiani, Ashish ; Kratschmer, Ernst ; Miao, Xin ; Zhu, Yu ; Mo, Renee ; Sosa, Norma ; Hamann, Hendrik ; Shahidi, Ghavam ; Riel, Heike</creatorcontrib><description>Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (&gt;10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b01339</identifier><identifier>PMID: 29932634</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-07, Vol.12 (7), p.6577-6587</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</citedby><cites>FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</cites><orcidid>0000-0002-9470-2315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b01339$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b01339$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29932634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafar, Sufi</creatorcontrib><creatorcontrib>D’Emic, Christopher</creatorcontrib><creatorcontrib>Jagtiani, Ashish</creatorcontrib><creatorcontrib>Kratschmer, Ernst</creatorcontrib><creatorcontrib>Miao, Xin</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Mo, Renee</creatorcontrib><creatorcontrib>Sosa, Norma</creatorcontrib><creatorcontrib>Hamann, Hendrik</creatorcontrib><creatorcontrib>Shahidi, Ghavam</creatorcontrib><creatorcontrib>Riel, Heike</creatorcontrib><title>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (&gt;10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kElLBDEQRoMoLqNnb5KjIK1ZekmOMriBy2FUvDXV6Won0pNo0oN48bcbndabEEhRvHrwfYTsc3bMmeAnYKID549Vw7iUeo1scy3LjKnyaf1vLvgW2YnxhbGiUlW5SbaE1lKUMt8mnzPbW-MdvU2adxuQnlvsW3rWdWgGeh_ARRsHH-gMXfQh0nc7zOmNdXYB_bjMBp-tJvoIwcJgvYsUXNK4OTiD7Q9o3TOdziGAGTAkqTVxl2x00EfcG_8JeTg_u59eZtd3F1fT0-sMpJRDVqLpsNWaV0Jq6ARLj-WV5gJANG3X5iLFVKLIlSyUYgKxaaBrW51joznICTlceV-Df1tiHOqFjQb7Hhz6ZawFK1TBVCWqhJ6sUBN8jAG7-jWkrOGj5qz-Lr0eS6_H0tPFwShfNgts__jflhNwtALSZf3il8GlrP_qvgA-Do_K</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Zafar, Sufi</creator><creator>D’Emic, Christopher</creator><creator>Jagtiani, Ashish</creator><creator>Kratschmer, Ernst</creator><creator>Miao, Xin</creator><creator>Zhu, Yu</creator><creator>Mo, Renee</creator><creator>Sosa, Norma</creator><creator>Hamann, Hendrik</creator><creator>Shahidi, Ghavam</creator><creator>Riel, Heike</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9470-2315</orcidid></search><sort><creationdate>20180724</creationdate><title>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</title><author>Zafar, Sufi ; D’Emic, Christopher ; Jagtiani, Ashish ; Kratschmer, Ernst ; Miao, Xin ; Zhu, Yu ; Mo, Renee ; Sosa, Norma ; Hamann, Hendrik ; Shahidi, Ghavam ; Riel, Heike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Sufi</creatorcontrib><creatorcontrib>D’Emic, Christopher</creatorcontrib><creatorcontrib>Jagtiani, Ashish</creatorcontrib><creatorcontrib>Kratschmer, Ernst</creatorcontrib><creatorcontrib>Miao, Xin</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Mo, Renee</creatorcontrib><creatorcontrib>Sosa, Norma</creatorcontrib><creatorcontrib>Hamann, Hendrik</creatorcontrib><creatorcontrib>Shahidi, Ghavam</creatorcontrib><creatorcontrib>Riel, Heike</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Sufi</au><au>D’Emic, Christopher</au><au>Jagtiani, Ashish</au><au>Kratschmer, Ernst</au><au>Miao, Xin</au><au>Zhu, Yu</au><au>Mo, Renee</au><au>Sosa, Norma</au><au>Hamann, Hendrik</au><au>Shahidi, Ghavam</au><au>Riel, Heike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>12</volume><issue>7</issue><spage>6577</spage><epage>6587</epage><pages>6577-6587</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (&gt;10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29932634</pmid><doi>10.1021/acsnano.8b01339</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9470-2315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-07, Vol.12 (7), p.6577-6587
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2058508727
source American Chemical Society (ACS) Journals
title Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20Nanowire%20Field%20Effect%20Transistor%20Sensors%20with%20Minimal%20Sensor-to-Sensor%20Variations%20and%20Enhanced%20Sensing%20Characteristics&rft.jtitle=ACS%20nano&rft.au=Zafar,%20Sufi&rft.date=2018-07-24&rft.volume=12&rft.issue=7&rft.spage=6577&rft.epage=6587&rft.pages=6577-6587&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b01339&rft_dat=%3Cproquest_cross%3E2058508727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058508727&rft_id=info:pmid/29932634&rfr_iscdi=true