Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics
Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their u...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-07, Vol.12 (7), p.6577-6587 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6587 |
---|---|
container_issue | 7 |
container_start_page | 6577 |
container_title | ACS nano |
container_volume | 12 |
creator | Zafar, Sufi D’Emic, Christopher Jagtiani, Ashish Kratschmer, Ernst Miao, Xin Zhu, Yu Mo, Renee Sosa, Norma Hamann, Hendrik Shahidi, Ghavam Riel, Heike |
description | Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases. |
doi_str_mv | 10.1021/acsnano.8b01339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2058508727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058508727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</originalsourceid><addsrcrecordid>eNp1kElLBDEQRoMoLqNnb5KjIK1ZekmOMriBy2FUvDXV6Won0pNo0oN48bcbndabEEhRvHrwfYTsc3bMmeAnYKID549Vw7iUeo1scy3LjKnyaf1vLvgW2YnxhbGiUlW5SbaE1lKUMt8mnzPbW-MdvU2adxuQnlvsW3rWdWgGeh_ARRsHH-gMXfQh0nc7zOmNdXYB_bjMBp-tJvoIwcJgvYsUXNK4OTiD7Q9o3TOdziGAGTAkqTVxl2x00EfcG_8JeTg_u59eZtd3F1fT0-sMpJRDVqLpsNWaV0Jq6ARLj-WV5gJANG3X5iLFVKLIlSyUYgKxaaBrW51joznICTlceV-Df1tiHOqFjQb7Hhz6ZawFK1TBVCWqhJ6sUBN8jAG7-jWkrOGj5qz-Lr0eS6_H0tPFwShfNgts__jflhNwtALSZf3il8GlrP_qvgA-Do_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058508727</pqid></control><display><type>article</type><title>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</title><source>American Chemical Society (ACS) Journals</source><creator>Zafar, Sufi ; D’Emic, Christopher ; Jagtiani, Ashish ; Kratschmer, Ernst ; Miao, Xin ; Zhu, Yu ; Mo, Renee ; Sosa, Norma ; Hamann, Hendrik ; Shahidi, Ghavam ; Riel, Heike</creator><creatorcontrib>Zafar, Sufi ; D’Emic, Christopher ; Jagtiani, Ashish ; Kratschmer, Ernst ; Miao, Xin ; Zhu, Yu ; Mo, Renee ; Sosa, Norma ; Hamann, Hendrik ; Shahidi, Ghavam ; Riel, Heike</creatorcontrib><description>Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b01339</identifier><identifier>PMID: 29932634</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-07, Vol.12 (7), p.6577-6587</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</citedby><cites>FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</cites><orcidid>0000-0002-9470-2315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b01339$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b01339$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29932634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafar, Sufi</creatorcontrib><creatorcontrib>D’Emic, Christopher</creatorcontrib><creatorcontrib>Jagtiani, Ashish</creatorcontrib><creatorcontrib>Kratschmer, Ernst</creatorcontrib><creatorcontrib>Miao, Xin</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Mo, Renee</creatorcontrib><creatorcontrib>Sosa, Norma</creatorcontrib><creatorcontrib>Hamann, Hendrik</creatorcontrib><creatorcontrib>Shahidi, Ghavam</creatorcontrib><creatorcontrib>Riel, Heike</creatorcontrib><title>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kElLBDEQRoMoLqNnb5KjIK1ZekmOMriBy2FUvDXV6Won0pNo0oN48bcbndabEEhRvHrwfYTsc3bMmeAnYKID549Vw7iUeo1scy3LjKnyaf1vLvgW2YnxhbGiUlW5SbaE1lKUMt8mnzPbW-MdvU2adxuQnlvsW3rWdWgGeh_ARRsHH-gMXfQh0nc7zOmNdXYB_bjMBp-tJvoIwcJgvYsUXNK4OTiD7Q9o3TOdziGAGTAkqTVxl2x00EfcG_8JeTg_u59eZtd3F1fT0-sMpJRDVqLpsNWaV0Jq6ARLj-WV5gJANG3X5iLFVKLIlSyUYgKxaaBrW51joznICTlceV-Df1tiHOqFjQb7Hhz6ZawFK1TBVCWqhJ6sUBN8jAG7-jWkrOGj5qz-Lr0eS6_H0tPFwShfNgts__jflhNwtALSZf3il8GlrP_qvgA-Do_K</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Zafar, Sufi</creator><creator>D’Emic, Christopher</creator><creator>Jagtiani, Ashish</creator><creator>Kratschmer, Ernst</creator><creator>Miao, Xin</creator><creator>Zhu, Yu</creator><creator>Mo, Renee</creator><creator>Sosa, Norma</creator><creator>Hamann, Hendrik</creator><creator>Shahidi, Ghavam</creator><creator>Riel, Heike</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9470-2315</orcidid></search><sort><creationdate>20180724</creationdate><title>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</title><author>Zafar, Sufi ; D’Emic, Christopher ; Jagtiani, Ashish ; Kratschmer, Ernst ; Miao, Xin ; Zhu, Yu ; Mo, Renee ; Sosa, Norma ; Hamann, Hendrik ; Shahidi, Ghavam ; Riel, Heike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-6ecfed9917239af20f20047912aa2bdfd4208582548358802eebbafdd94eb91a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Sufi</creatorcontrib><creatorcontrib>D’Emic, Christopher</creatorcontrib><creatorcontrib>Jagtiani, Ashish</creatorcontrib><creatorcontrib>Kratschmer, Ernst</creatorcontrib><creatorcontrib>Miao, Xin</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Mo, Renee</creatorcontrib><creatorcontrib>Sosa, Norma</creatorcontrib><creatorcontrib>Hamann, Hendrik</creatorcontrib><creatorcontrib>Shahidi, Ghavam</creatorcontrib><creatorcontrib>Riel, Heike</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Sufi</au><au>D’Emic, Christopher</au><au>Jagtiani, Ashish</au><au>Kratschmer, Ernst</au><au>Miao, Xin</au><au>Zhu, Yu</au><au>Mo, Renee</au><au>Sosa, Norma</au><au>Hamann, Hendrik</au><au>Shahidi, Ghavam</au><au>Riel, Heike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>12</volume><issue>7</issue><spage>6577</spage><epage>6587</epage><pages>6577-6587</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV–1 cm–3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29932634</pmid><doi>10.1021/acsnano.8b01339</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9470-2315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-07, Vol.12 (7), p.6577-6587 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2058508727 |
source | American Chemical Society (ACS) Journals |
title | Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20Nanowire%20Field%20Effect%20Transistor%20Sensors%20with%20Minimal%20Sensor-to-Sensor%20Variations%20and%20Enhanced%20Sensing%20Characteristics&rft.jtitle=ACS%20nano&rft.au=Zafar,%20Sufi&rft.date=2018-07-24&rft.volume=12&rft.issue=7&rft.spage=6577&rft.epage=6587&rft.pages=6577-6587&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b01339&rft_dat=%3Cproquest_cross%3E2058508727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058508727&rft_id=info:pmid/29932634&rfr_iscdi=true |