Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites

Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-07, Vol.14 (29), p.e1800135-n/a
Hauptverfasser: He, Shuli, Zhang, Hongwang, Liu, Yihao, Sun, Fan, Yu, Xiang, Li, Xueyan, Zhang, Li, Wang, Lichen, Mao, Keya, Wang, Gangshi, Lin, Yunjuan, Han, Zhenchuan, Sabirianov, Renat, Zeng, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e1800135
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator He, Shuli
Zhang, Hongwang
Liu, Yihao
Sun, Fan
Yu, Xiang
Li, Xueyan
Zhang, Li
Wang, Lichen
Mao, Keya
Wang, Gangshi
Lin, Yunjuan
Han, Zhenchuan
Sabirianov, Renat
Zeng, Hao
description Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite. By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.
doi_str_mv 10.1002/smll.201800135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2058500414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058500414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHiXgxUvrJNnsx1GKtcIWharXZTed1JTdbk22aD35H_yH_hJTWit48TTD8Lwvw0PIKYMeA-CXrirLHgcWAzAh90ibhUx0w5gn-7udQYscOTcDEIwH0SFp8SQRPsLb5GmUv5nKvJv5lI4XqIw2iqa1c_S-fkVLdW3pKJ_OsfH34WqBtnlGW5mcFis6zO3k6-NzXOuGjswbTugArTUNumNyoPPS4cl2dsjj4PqhP-ymdze3_au0q0QkZLfQWuegk1jpQMQglQatQ4h4AioAKUIWFxoVREkYAkZBwTUglyqG2F8KJTrkYtO7sPXLEl2TVcYpLMt8jvXSZRxkLAECFnj0_A86q5d27r_zVMSkFOB1dUhvQynrJVjU2cKaKrerjEG2Np6tjWc74z5wtq1dFhVOdviPYg8kG-DVlLj6py4bj9L0t_wbYleNIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071553061</pqid></control><display><type>article</type><title>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao</creator><creatorcontrib>He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao</creatorcontrib><description>Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite. By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201800135</identifier><identifier>PMID: 29931802</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternating current ; Biocompatibility ; Bone cements ; Cell death ; Ferrites ; Fever ; Heating ; Hyperthermia ; intrinsic loss power ; Magnetic anisotropy ; magnetic hyperthermia ; magnetic nanoparticles ; Nanoparticles ; Nanotechnology ; Parameters ; Silicon dioxide ; specific loss power ; Toxicity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (29), p.e1800135-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</citedby><cites>FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201800135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201800135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zhang, Hongwang</creatorcontrib><creatorcontrib>Liu, Yihao</creatorcontrib><creatorcontrib>Sun, Fan</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Li, Xueyan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Mao, Keya</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Han, Zhenchuan</creatorcontrib><creatorcontrib>Sabirianov, Renat</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><title>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite. By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.</description><subject>Alternating current</subject><subject>Biocompatibility</subject><subject>Bone cements</subject><subject>Cell death</subject><subject>Ferrites</subject><subject>Fever</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>intrinsic loss power</subject><subject>Magnetic anisotropy</subject><subject>magnetic hyperthermia</subject><subject>magnetic nanoparticles</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Parameters</subject><subject>Silicon dioxide</subject><subject>specific loss power</subject><subject>Toxicity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlavHiXgxUvrJNnsx1GKtcIWharXZTed1JTdbk22aD35H_yH_hJTWit48TTD8Lwvw0PIKYMeA-CXrirLHgcWAzAh90ibhUx0w5gn-7udQYscOTcDEIwH0SFp8SQRPsLb5GmUv5nKvJv5lI4XqIw2iqa1c_S-fkVLdW3pKJ_OsfH34WqBtnlGW5mcFis6zO3k6-NzXOuGjswbTugArTUNumNyoPPS4cl2dsjj4PqhP-ymdze3_au0q0QkZLfQWuegk1jpQMQglQatQ4h4AioAKUIWFxoVREkYAkZBwTUglyqG2F8KJTrkYtO7sPXLEl2TVcYpLMt8jvXSZRxkLAECFnj0_A86q5d27r_zVMSkFOB1dUhvQynrJVjU2cKaKrerjEG2Np6tjWc74z5wtq1dFhVOdviPYg8kG-DVlLj6py4bj9L0t_wbYleNIA</recordid><startdate>20180719</startdate><enddate>20180719</enddate><creator>He, Shuli</creator><creator>Zhang, Hongwang</creator><creator>Liu, Yihao</creator><creator>Sun, Fan</creator><creator>Yu, Xiang</creator><creator>Li, Xueyan</creator><creator>Zhang, Li</creator><creator>Wang, Lichen</creator><creator>Mao, Keya</creator><creator>Wang, Gangshi</creator><creator>Lin, Yunjuan</creator><creator>Han, Zhenchuan</creator><creator>Sabirianov, Renat</creator><creator>Zeng, Hao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180719</creationdate><title>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</title><author>He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternating current</topic><topic>Biocompatibility</topic><topic>Bone cements</topic><topic>Cell death</topic><topic>Ferrites</topic><topic>Fever</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>intrinsic loss power</topic><topic>Magnetic anisotropy</topic><topic>magnetic hyperthermia</topic><topic>magnetic nanoparticles</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Parameters</topic><topic>Silicon dioxide</topic><topic>specific loss power</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zhang, Hongwang</creatorcontrib><creatorcontrib>Liu, Yihao</creatorcontrib><creatorcontrib>Sun, Fan</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Li, Xueyan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Mao, Keya</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Han, Zhenchuan</creatorcontrib><creatorcontrib>Sabirianov, Renat</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Shuli</au><au>Zhang, Hongwang</au><au>Liu, Yihao</au><au>Sun, Fan</au><au>Yu, Xiang</au><au>Li, Xueyan</au><au>Zhang, Li</au><au>Wang, Lichen</au><au>Mao, Keya</au><au>Wang, Gangshi</au><au>Lin, Yunjuan</au><au>Han, Zhenchuan</au><au>Sabirianov, Renat</au><au>Zeng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-07-19</date><risdate>2018</risdate><volume>14</volume><issue>29</issue><spage>e1800135</spage><epage>n/a</epage><pages>e1800135-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite. By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29931802</pmid><doi>10.1002/smll.201800135</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (29), p.e1800135-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2058500414
source Wiley Online Library - AutoHoldings Journals
subjects Alternating current
Biocompatibility
Bone cements
Cell death
Ferrites
Fever
Heating
Hyperthermia
intrinsic loss power
Magnetic anisotropy
magnetic hyperthermia
magnetic nanoparticles
Nanoparticles
Nanotechnology
Parameters
Silicon dioxide
specific loss power
Toxicity
title Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Specific%20Loss%20Power%20for%20Magnetic%20Hyperthermia%20by%20Hard%E2%80%93Soft%20Mixed%20Ferrites&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=He,%20Shuli&rft.date=2018-07-19&rft.volume=14&rft.issue=29&rft.spage=e1800135&rft.epage=n/a&rft.pages=e1800135-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201800135&rft_dat=%3Cproquest_cross%3E2058500414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071553061&rft_id=info:pmid/29931802&rfr_iscdi=true