Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites
Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites....
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-07, Vol.14 (29), p.e1800135-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | e1800135 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | He, Shuli Zhang, Hongwang Liu, Yihao Sun, Fan Yu, Xiang Li, Xueyan Zhang, Li Wang, Lichen Mao, Keya Wang, Gangshi Lin, Yunjuan Han, Zhenchuan Sabirianov, Renat Zeng, Hao |
description | Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.
By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage. |
doi_str_mv | 10.1002/smll.201800135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2058500414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058500414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHiXgxUvrJNnsx1GKtcIWharXZTed1JTdbk22aD35H_yH_hJTWit48TTD8Lwvw0PIKYMeA-CXrirLHgcWAzAh90ibhUx0w5gn-7udQYscOTcDEIwH0SFp8SQRPsLb5GmUv5nKvJv5lI4XqIw2iqa1c_S-fkVLdW3pKJ_OsfH34WqBtnlGW5mcFis6zO3k6-NzXOuGjswbTugArTUNumNyoPPS4cl2dsjj4PqhP-ymdze3_au0q0QkZLfQWuegk1jpQMQglQatQ4h4AioAKUIWFxoVREkYAkZBwTUglyqG2F8KJTrkYtO7sPXLEl2TVcYpLMt8jvXSZRxkLAECFnj0_A86q5d27r_zVMSkFOB1dUhvQynrJVjU2cKaKrerjEG2Np6tjWc74z5wtq1dFhVOdviPYg8kG-DVlLj6py4bj9L0t_wbYleNIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071553061</pqid></control><display><type>article</type><title>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao</creator><creatorcontrib>He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao</creatorcontrib><description>Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.
By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201800135</identifier><identifier>PMID: 29931802</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternating current ; Biocompatibility ; Bone cements ; Cell death ; Ferrites ; Fever ; Heating ; Hyperthermia ; intrinsic loss power ; Magnetic anisotropy ; magnetic hyperthermia ; magnetic nanoparticles ; Nanoparticles ; Nanotechnology ; Parameters ; Silicon dioxide ; specific loss power ; Toxicity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (29), p.e1800135-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</citedby><cites>FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201800135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201800135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zhang, Hongwang</creatorcontrib><creatorcontrib>Liu, Yihao</creatorcontrib><creatorcontrib>Sun, Fan</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Li, Xueyan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Mao, Keya</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Han, Zhenchuan</creatorcontrib><creatorcontrib>Sabirianov, Renat</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><title>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.
By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.</description><subject>Alternating current</subject><subject>Biocompatibility</subject><subject>Bone cements</subject><subject>Cell death</subject><subject>Ferrites</subject><subject>Fever</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>intrinsic loss power</subject><subject>Magnetic anisotropy</subject><subject>magnetic hyperthermia</subject><subject>magnetic nanoparticles</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Parameters</subject><subject>Silicon dioxide</subject><subject>specific loss power</subject><subject>Toxicity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlavHiXgxUvrJNnsx1GKtcIWharXZTed1JTdbk22aD35H_yH_hJTWit48TTD8Lwvw0PIKYMeA-CXrirLHgcWAzAh90ibhUx0w5gn-7udQYscOTcDEIwH0SFp8SQRPsLb5GmUv5nKvJv5lI4XqIw2iqa1c_S-fkVLdW3pKJ_OsfH34WqBtnlGW5mcFis6zO3k6-NzXOuGjswbTugArTUNumNyoPPS4cl2dsjj4PqhP-ymdze3_au0q0QkZLfQWuegk1jpQMQglQatQ4h4AioAKUIWFxoVREkYAkZBwTUglyqG2F8KJTrkYtO7sPXLEl2TVcYpLMt8jvXSZRxkLAECFnj0_A86q5d27r_zVMSkFOB1dUhvQynrJVjU2cKaKrerjEG2Np6tjWc74z5wtq1dFhVOdviPYg8kG-DVlLj6py4bj9L0t_wbYleNIA</recordid><startdate>20180719</startdate><enddate>20180719</enddate><creator>He, Shuli</creator><creator>Zhang, Hongwang</creator><creator>Liu, Yihao</creator><creator>Sun, Fan</creator><creator>Yu, Xiang</creator><creator>Li, Xueyan</creator><creator>Zhang, Li</creator><creator>Wang, Lichen</creator><creator>Mao, Keya</creator><creator>Wang, Gangshi</creator><creator>Lin, Yunjuan</creator><creator>Han, Zhenchuan</creator><creator>Sabirianov, Renat</creator><creator>Zeng, Hao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180719</creationdate><title>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</title><author>He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-bfffa0f98cf43805cf0ff607290c4053618bfec079660e74b2f0e25c808966bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternating current</topic><topic>Biocompatibility</topic><topic>Bone cements</topic><topic>Cell death</topic><topic>Ferrites</topic><topic>Fever</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>intrinsic loss power</topic><topic>Magnetic anisotropy</topic><topic>magnetic hyperthermia</topic><topic>magnetic nanoparticles</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Parameters</topic><topic>Silicon dioxide</topic><topic>specific loss power</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shuli</creatorcontrib><creatorcontrib>Zhang, Hongwang</creatorcontrib><creatorcontrib>Liu, Yihao</creatorcontrib><creatorcontrib>Sun, Fan</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Li, Xueyan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Mao, Keya</creatorcontrib><creatorcontrib>Wang, Gangshi</creatorcontrib><creatorcontrib>Lin, Yunjuan</creatorcontrib><creatorcontrib>Han, Zhenchuan</creatorcontrib><creatorcontrib>Sabirianov, Renat</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Shuli</au><au>Zhang, Hongwang</au><au>Liu, Yihao</au><au>Sun, Fan</au><au>Yu, Xiang</au><au>Li, Xueyan</au><au>Zhang, Li</au><au>Wang, Lichen</au><au>Mao, Keya</au><au>Wang, Gangshi</au><au>Lin, Yunjuan</au><au>Han, Zhenchuan</au><au>Sabirianov, Renat</au><au>Zeng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-07-19</date><risdate>2018</risdate><volume>14</volume><issue>29</issue><spage>e1800135</spage><epage>n/a</epage><pages>e1800135-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating‐current (AC) magnetic‐field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.
By engineering the magnetic anisotropy of nanoparticles via alloying of hard and soft ferrites, specific loss power and intrinsic loss power are maximized at alternating‐current field parameters below the clinical safety limit. These biocompatible nanoparticles yield high cell death rate in cellular hyperthermia. Bone cement incorporating the nanoparticles can be heated efficiently at ultralow dosage.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29931802</pmid><doi>10.1002/smll.201800135</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (29), p.e1800135-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2058500414 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Alternating current Biocompatibility Bone cements Cell death Ferrites Fever Heating Hyperthermia intrinsic loss power Magnetic anisotropy magnetic hyperthermia magnetic nanoparticles Nanoparticles Nanotechnology Parameters Silicon dioxide specific loss power Toxicity |
title | Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Specific%20Loss%20Power%20for%20Magnetic%20Hyperthermia%20by%20Hard%E2%80%93Soft%20Mixed%20Ferrites&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=He,%20Shuli&rft.date=2018-07-19&rft.volume=14&rft.issue=29&rft.spage=e1800135&rft.epage=n/a&rft.pages=e1800135-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201800135&rft_dat=%3Cproquest_cross%3E2058500414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071553061&rft_id=info:pmid/29931802&rfr_iscdi=true |