Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases
Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers—especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the developme...
Gespeichert in:
Veröffentlicht in: | Clinical EEG and Neuroscience 2019-01, Vol.50 (1), p.20-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | Clinical EEG and Neuroscience |
container_volume | 50 |
creator | Tulay, Emine Elif Metin, Barış Tarhan, Nevzat Arıkan, Mehmet Kemal |
description | Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers—especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification—especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN. |
doi_str_mv | 10.1177/1550059418782093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057866882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1550059418782093</sage_id><sourcerecordid>2057866882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ab055e5f5d8ea926d861b4ef6037b2ad806ddbd9eed31ece0e9df5ffc71098713</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EouVjZ0KRWFgCthM7NhuUT6nAAmKMHPtcjNK45JKh_55ULSAhMd1wz_ve6SHkiNEzxorinAlBqdA5U4XiVGdbZMyZ1KnglG-T8WqdrvYjsof4QWkmeZbvkhHXmgsu1Zi8PfZ1F-bRmTp5gr6NYW5moZldJFcGg00msbGw6DAxjUsmtUEMPljThdgk0a8jC1za92C6duCvA4JBwAOy402NcLiZ--T19uZlcp9On-8eJpfT1GZSdKmpqBAgvHAKjObSKcmqHLykWVFx4xSVzlVOA7iMgQUK2nnhvS0Y1apg2T45Xfcu2vjZA3blPKCFujYNxB5LTkWhpFSKD-jJH_Qj9m0zfFdyJnKdZ0WeDxRdU7aNiC34ctEOTtplyWi5kl7-lT5EjjfFfTUH9xP4tjwA6RpAM4Pfq_8WfgGb34nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154943744</pqid></control><display><type>article</type><title>Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases</title><source>SAGE Complete A-Z List</source><creator>Tulay, Emine Elif ; Metin, Barış ; Tarhan, Nevzat ; Arıkan, Mehmet Kemal</creator><creatorcontrib>Tulay, Emine Elif ; Metin, Barış ; Tarhan, Nevzat ; Arıkan, Mehmet Kemal</creatorcontrib><description>Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers—especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification—especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.</description><identifier>ISSN: 1550-0594</identifier><identifier>EISSN: 2169-5202</identifier><identifier>DOI: 10.1177/1550059418782093</identifier><identifier>PMID: 29925268</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Artificial intelligence ; Biomarkers ; Brain ; Brain mapping ; Classification ; Cognitive ability ; Data integration ; Diseases ; EEG ; Functional magnetic resonance imaging ; Inspection ; Learning algorithms ; Literature reviews ; Medical imaging ; Mental disorders ; Nervous system ; Neuroimaging ; Neurology ; Principal components analysis</subject><ispartof>Clinical EEG and Neuroscience, 2019-01, Vol.50 (1), p.20-33</ispartof><rights>EEG and Clinical Neuroscience Society (ECNS)2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ab055e5f5d8ea926d861b4ef6037b2ad806ddbd9eed31ece0e9df5ffc71098713</citedby><cites>FETCH-LOGICAL-c365t-ab055e5f5d8ea926d861b4ef6037b2ad806ddbd9eed31ece0e9df5ffc71098713</cites><orcidid>0000-0003-0150-5476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1550059418782093$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1550059418782093$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,780,784,792,21819,27922,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29925268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tulay, Emine Elif</creatorcontrib><creatorcontrib>Metin, Barış</creatorcontrib><creatorcontrib>Tarhan, Nevzat</creatorcontrib><creatorcontrib>Arıkan, Mehmet Kemal</creatorcontrib><title>Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases</title><title>Clinical EEG and Neuroscience</title><addtitle>Clin EEG Neurosci</addtitle><description>Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers—especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification—especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.</description><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Data integration</subject><subject>Diseases</subject><subject>EEG</subject><subject>Functional magnetic resonance imaging</subject><subject>Inspection</subject><subject>Learning algorithms</subject><subject>Literature reviews</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Principal components analysis</subject><issn>1550-0594</issn><issn>2169-5202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EouVjZ0KRWFgCthM7NhuUT6nAAmKMHPtcjNK45JKh_55ULSAhMd1wz_ve6SHkiNEzxorinAlBqdA5U4XiVGdbZMyZ1KnglG-T8WqdrvYjsof4QWkmeZbvkhHXmgsu1Zi8PfZ1F-bRmTp5gr6NYW5moZldJFcGg00msbGw6DAxjUsmtUEMPljThdgk0a8jC1za92C6duCvA4JBwAOy402NcLiZ--T19uZlcp9On-8eJpfT1GZSdKmpqBAgvHAKjObSKcmqHLykWVFx4xSVzlVOA7iMgQUK2nnhvS0Y1apg2T45Xfcu2vjZA3blPKCFujYNxB5LTkWhpFSKD-jJH_Qj9m0zfFdyJnKdZ0WeDxRdU7aNiC34ctEOTtplyWi5kl7-lT5EjjfFfTUH9xP4tjwA6RpAM4Pfq_8WfgGb34nw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Tulay, Emine Elif</creator><creator>Metin, Barış</creator><creator>Tarhan, Nevzat</creator><creator>Arıkan, Mehmet Kemal</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0150-5476</orcidid></search><sort><creationdate>201901</creationdate><title>Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases</title><author>Tulay, Emine Elif ; Metin, Barış ; Tarhan, Nevzat ; Arıkan, Mehmet Kemal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ab055e5f5d8ea926d861b4ef6037b2ad806ddbd9eed31ece0e9df5ffc71098713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Data integration</topic><topic>Diseases</topic><topic>EEG</topic><topic>Functional magnetic resonance imaging</topic><topic>Inspection</topic><topic>Learning algorithms</topic><topic>Literature reviews</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Principal components analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tulay, Emine Elif</creatorcontrib><creatorcontrib>Metin, Barış</creatorcontrib><creatorcontrib>Tarhan, Nevzat</creatorcontrib><creatorcontrib>Arıkan, Mehmet Kemal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical EEG and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tulay, Emine Elif</au><au>Metin, Barış</au><au>Tarhan, Nevzat</au><au>Arıkan, Mehmet Kemal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases</atitle><jtitle>Clinical EEG and Neuroscience</jtitle><addtitle>Clin EEG Neurosci</addtitle><date>2019-01</date><risdate>2019</risdate><volume>50</volume><issue>1</issue><spage>20</spage><epage>33</epage><pages>20-33</pages><issn>1550-0594</issn><eissn>2169-5202</eissn><abstract>Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers—especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification—especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>29925268</pmid><doi>10.1177/1550059418782093</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0150-5476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-0594 |
ispartof | Clinical EEG and Neuroscience, 2019-01, Vol.50 (1), p.20-33 |
issn | 1550-0594 2169-5202 |
language | eng |
recordid | cdi_proquest_miscellaneous_2057866882 |
source | SAGE Complete A-Z List |
subjects | Artificial intelligence Biomarkers Brain Brain mapping Classification Cognitive ability Data integration Diseases EEG Functional magnetic resonance imaging Inspection Learning algorithms Literature reviews Medical imaging Mental disorders Nervous system Neuroimaging Neurology Principal components analysis |
title | Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Neuroimaging:%20Basic%20Concepts%20and%20Classification%20of%20Neuropsychiatric%20Diseases&rft.jtitle=Clinical%20EEG%20and%20Neuroscience&rft.au=Tulay,%20Emine%20Elif&rft.date=2019-01&rft.volume=50&rft.issue=1&rft.spage=20&rft.epage=33&rft.pages=20-33&rft.issn=1550-0594&rft.eissn=2169-5202&rft_id=info:doi/10.1177/1550059418782093&rft_dat=%3Cproquest_cross%3E2057866882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154943744&rft_id=info:pmid/29925268&rft_sage_id=10.1177_1550059418782093&rfr_iscdi=true |