Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R$_\odot

The purpose of the paper is to measure the degree of temperature anisotropy of the oxygen ions in the outer corona. The ratio of the Doppler dimmed O VI 1037-1032 line intensity as a function of the velocity of the fast solar wind, computed for typical values of coronal density, is consistent with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2007-12, Vol.476 (3), p.1341-1346
Hauptverfasser: Telloni, D., Antonucci, E., Dodero, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 3
container_start_page 1341
container_title Astronomy and astrophysics (Berlin)
container_volume 476
creator Telloni, D.
Antonucci, E.
Dodero, M. A.
description The purpose of the paper is to measure the degree of temperature anisotropy of the oxygen ions in the outer corona. The ratio of the Doppler dimmed O VI 1037-1032 line intensity as a function of the velocity of the fast solar wind, computed for typical values of coronal density, is consistent with the observed ratio, only when a significant temperature anisotropy is established in polar coronal holes. The oxygen ion velocity distribution is constrained to be bi-Maxwellian from 2$R_\odot$ to 3.7$R_\odot$, where the lowest degree of anisotropy compatible with the observational data increases up to ~7 at 2.9$R_\odot$, proving that the oxygen ions are accelerated across the magnetic field, in accordance with a preferential energy deposition perpendicular to the field lines, consistent with the process of ion-cyclotron dissipation of Alfvén waves. The most plausible evolution of the velocity distribution of the O+5 ions departs from the bi-Maxwellian configuration at 2$R_\odot$, according to an anisotropy ratio that reaches its maximum value $T_\perp/T_\parallel$~14 at 2.9$R_\odot$, and further out approaches isotropy, at 3.7$R_\odot$. In response to the acceleration across the field, energy redistribution along the magnetic field lines accelerates the oxygen component of the solar wind to velocities of 760 km s-1 at 5$R_\odot$. The variation of the anisotropy ratio with the heliocentric distance might be satisfactorily explained by theoretical models of the fast solar wind heating based on the oxygen cyclotron instability or the fast shock mechanism. The observations of the extended corona analyzed in this paper are performed with the Ultraviolet Coronagraph Spectrometer on board the Solar Heliospheric Observatory, during the solar minimum activity period 1996–1997.
doi_str_mv 10.1051/0004-6361:20077660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20574575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20574575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1615-61717302f23b16958a3c8a7037b1a83957e78581ab568c571c5c84fa883e4a2c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt_wFUW4m40mUwedSfik0qlVBQRwp00045OJ2OS0fbfO6Xa1T0XvnMWH0LHlJxRwuk5ISRLBBP0IiVESiHIDurRjKUJkZnYRb0tsI8OQvjo3pQq1kNvo-VqZmsc7aKxHmLrLYa6DC5616y6OMXBVeDxT9nFuYVY1jMMufu22Djvaqjw3FU2YNdGHB3meHyi393UxUO0V0AV7NHf7aPnm-vJ1V0yHN3eX10OE0MF5YmgkkpG0iJlORUDroAZBZIwmVNQbMCllYorCjkXynBJDTcqK0ApZjNIDeuj081u491Xa0PUizIYW1VQW9cGnRIuMy55B6Yb0HgXgreFbny5AL_SlOi1Rr22pNeW9L_GrpRsSmWIdrltgP_UQjLJtSIvevIwfHocZ0y_sl_GPHMt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20574575</pqid></control><display><type>article</type><title>Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R$_\odot</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Telloni, D. ; Antonucci, E. ; Dodero, M. A.</creator><creatorcontrib>Telloni, D. ; Antonucci, E. ; Dodero, M. A.</creatorcontrib><description>The purpose of the paper is to measure the degree of temperature anisotropy of the oxygen ions in the outer corona. The ratio of the Doppler dimmed O VI 1037-1032 line intensity as a function of the velocity of the fast solar wind, computed for typical values of coronal density, is consistent with the observed ratio, only when a significant temperature anisotropy is established in polar coronal holes. The oxygen ion velocity distribution is constrained to be bi-Maxwellian from 2$R_\odot$ to 3.7$R_\odot$, where the lowest degree of anisotropy compatible with the observational data increases up to ~7 at 2.9$R_\odot$, proving that the oxygen ions are accelerated across the magnetic field, in accordance with a preferential energy deposition perpendicular to the field lines, consistent with the process of ion-cyclotron dissipation of Alfvén waves. The most plausible evolution of the velocity distribution of the O+5 ions departs from the bi-Maxwellian configuration at 2$R_\odot$, according to an anisotropy ratio that reaches its maximum value $T_\perp/T_\parallel$~14 at 2.9$R_\odot$, and further out approaches isotropy, at 3.7$R_\odot$. In response to the acceleration across the field, energy redistribution along the magnetic field lines accelerates the oxygen component of the solar wind to velocities of 760 km s-1 at 5$R_\odot$. The variation of the anisotropy ratio with the heliocentric distance might be satisfactorily explained by theoretical models of the fast solar wind heating based on the oxygen cyclotron instability or the fast shock mechanism. The observations of the extended corona analyzed in this paper are performed with the Ultraviolet Coronagraph Spectrometer on board the Solar Heliospheric Observatory, during the solar minimum activity period 1996–1997.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20077660</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Sun: corona ; Sun: solar wind ; Sun: UV radiation</subject><ispartof>Astronomy and astrophysics (Berlin), 2007-12, Vol.476 (3), p.1341-1346</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1615-61717302f23b16958a3c8a7037b1a83957e78581ab568c571c5c84fa883e4a2c3</citedby><cites>FETCH-LOGICAL-c1615-61717302f23b16958a3c8a7037b1a83957e78581ab568c571c5c84fa883e4a2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3716,27911,27912</link.rule.ids></links><search><creatorcontrib>Telloni, D.</creatorcontrib><creatorcontrib>Antonucci, E.</creatorcontrib><creatorcontrib>Dodero, M. A.</creatorcontrib><title>Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R$_\odot</title><title>Astronomy and astrophysics (Berlin)</title><description>The purpose of the paper is to measure the degree of temperature anisotropy of the oxygen ions in the outer corona. The ratio of the Doppler dimmed O VI 1037-1032 line intensity as a function of the velocity of the fast solar wind, computed for typical values of coronal density, is consistent with the observed ratio, only when a significant temperature anisotropy is established in polar coronal holes. The oxygen ion velocity distribution is constrained to be bi-Maxwellian from 2$R_\odot$ to 3.7$R_\odot$, where the lowest degree of anisotropy compatible with the observational data increases up to ~7 at 2.9$R_\odot$, proving that the oxygen ions are accelerated across the magnetic field, in accordance with a preferential energy deposition perpendicular to the field lines, consistent with the process of ion-cyclotron dissipation of Alfvén waves. The most plausible evolution of the velocity distribution of the O+5 ions departs from the bi-Maxwellian configuration at 2$R_\odot$, according to an anisotropy ratio that reaches its maximum value $T_\perp/T_\parallel$~14 at 2.9$R_\odot$, and further out approaches isotropy, at 3.7$R_\odot$. In response to the acceleration across the field, energy redistribution along the magnetic field lines accelerates the oxygen component of the solar wind to velocities of 760 km s-1 at 5$R_\odot$. The variation of the anisotropy ratio with the heliocentric distance might be satisfactorily explained by theoretical models of the fast solar wind heating based on the oxygen cyclotron instability or the fast shock mechanism. The observations of the extended corona analyzed in this paper are performed with the Ultraviolet Coronagraph Spectrometer on board the Solar Heliospheric Observatory, during the solar minimum activity period 1996–1997.</description><subject>Sun: corona</subject><subject>Sun: solar wind</subject><subject>Sun: UV radiation</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt_wFUW4m40mUwedSfik0qlVBQRwp00045OJ2OS0fbfO6Xa1T0XvnMWH0LHlJxRwuk5ISRLBBP0IiVESiHIDurRjKUJkZnYRb0tsI8OQvjo3pQq1kNvo-VqZmsc7aKxHmLrLYa6DC5616y6OMXBVeDxT9nFuYVY1jMMufu22Djvaqjw3FU2YNdGHB3meHyi393UxUO0V0AV7NHf7aPnm-vJ1V0yHN3eX10OE0MF5YmgkkpG0iJlORUDroAZBZIwmVNQbMCllYorCjkXynBJDTcqK0ApZjNIDeuj081u491Xa0PUizIYW1VQW9cGnRIuMy55B6Yb0HgXgreFbny5AL_SlOi1Rr22pNeW9L_GrpRsSmWIdrltgP_UQjLJtSIvevIwfHocZ0y_sl_GPHMt</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Telloni, D.</creator><creator>Antonucci, E.</creator><creator>Dodero, M. A.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200712</creationdate><title>Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R$_\odot</title><author>Telloni, D. ; Antonucci, E. ; Dodero, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1615-61717302f23b16958a3c8a7037b1a83957e78581ab568c571c5c84fa883e4a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Sun: corona</topic><topic>Sun: solar wind</topic><topic>Sun: UV radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telloni, D.</creatorcontrib><creatorcontrib>Antonucci, E.</creatorcontrib><creatorcontrib>Dodero, M. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telloni, D.</au><au>Antonucci, E.</au><au>Dodero, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R$_\odot</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2007-12</date><risdate>2007</risdate><volume>476</volume><issue>3</issue><spage>1341</spage><epage>1346</epage><pages>1341-1346</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>The purpose of the paper is to measure the degree of temperature anisotropy of the oxygen ions in the outer corona. The ratio of the Doppler dimmed O VI 1037-1032 line intensity as a function of the velocity of the fast solar wind, computed for typical values of coronal density, is consistent with the observed ratio, only when a significant temperature anisotropy is established in polar coronal holes. The oxygen ion velocity distribution is constrained to be bi-Maxwellian from 2$R_\odot$ to 3.7$R_\odot$, where the lowest degree of anisotropy compatible with the observational data increases up to ~7 at 2.9$R_\odot$, proving that the oxygen ions are accelerated across the magnetic field, in accordance with a preferential energy deposition perpendicular to the field lines, consistent with the process of ion-cyclotron dissipation of Alfvén waves. The most plausible evolution of the velocity distribution of the O+5 ions departs from the bi-Maxwellian configuration at 2$R_\odot$, according to an anisotropy ratio that reaches its maximum value $T_\perp/T_\parallel$~14 at 2.9$R_\odot$, and further out approaches isotropy, at 3.7$R_\odot$. In response to the acceleration across the field, energy redistribution along the magnetic field lines accelerates the oxygen component of the solar wind to velocities of 760 km s-1 at 5$R_\odot$. The variation of the anisotropy ratio with the heliocentric distance might be satisfactorily explained by theoretical models of the fast solar wind heating based on the oxygen cyclotron instability or the fast shock mechanism. The observations of the extended corona analyzed in this paper are performed with the Ultraviolet Coronagraph Spectrometer on board the Solar Heliospheric Observatory, during the solar minimum activity period 1996–1997.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20077660</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2007-12, Vol.476 (3), p.1341-1346
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_20574575
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Sun: corona
Sun: solar wind
Sun: UV radiation
title Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R$_\odot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20temperature%20anisotropy%20and%20solar%20wind%20heating%20above%20coronal%20holes%20out%20to%205%20R$_%5Codot&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Telloni,%20D.&rft.date=2007-12&rft.volume=476&rft.issue=3&rft.spage=1341&rft.epage=1346&rft.pages=1341-1346&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361:20077660&rft_dat=%3Cproquest_cross%3E20574575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20574575&rft_id=info:pmid/&rfr_iscdi=true